Solve for x
x = \frac{\sqrt{6} + 3}{2} \approx 2.724744871
x=\frac{3-\sqrt{6}}{2}\approx 0.275255129
Graph
Share
Copied to clipboard
4x^{2}-12x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 3}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 3}}{2\times 4}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 3}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-12\right)±\sqrt{144-48}}{2\times 4}
Multiply -16 times 3.
x=\frac{-\left(-12\right)±\sqrt{96}}{2\times 4}
Add 144 to -48.
x=\frac{-\left(-12\right)±4\sqrt{6}}{2\times 4}
Take the square root of 96.
x=\frac{12±4\sqrt{6}}{2\times 4}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{6}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{6}+12}{8}
Now solve the equation x=\frac{12±4\sqrt{6}}{8} when ± is plus. Add 12 to 4\sqrt{6}.
x=\frac{\sqrt{6}+3}{2}
Divide 12+4\sqrt{6} by 8.
x=\frac{12-4\sqrt{6}}{8}
Now solve the equation x=\frac{12±4\sqrt{6}}{8} when ± is minus. Subtract 4\sqrt{6} from 12.
x=\frac{3-\sqrt{6}}{2}
Divide 12-4\sqrt{6} by 8.
x=\frac{\sqrt{6}+3}{2} x=\frac{3-\sqrt{6}}{2}
The equation is now solved.
4x^{2}-12x+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-12x+3-3=-3
Subtract 3 from both sides of the equation.
4x^{2}-12x=-3
Subtracting 3 from itself leaves 0.
\frac{4x^{2}-12x}{4}=-\frac{3}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{3}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-3x=-\frac{3}{4}
Divide -12 by 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{3}{4}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{-3+9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{3}{2}
Add -\frac{3}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{3}{2}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{3}{2}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{6}}{2} x-\frac{3}{2}=-\frac{\sqrt{6}}{2}
Simplify.
x=\frac{\sqrt{6}+3}{2} x=\frac{3-\sqrt{6}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}