Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-11 ab=4\times 7=28
Factor the expression by grouping. First, the expression needs to be rewritten as 4x^{2}+ax+bx+7. To find a and b, set up a system to be solved.
-1,-28 -2,-14 -4,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 28.
-1-28=-29 -2-14=-16 -4-7=-11
Calculate the sum for each pair.
a=-7 b=-4
The solution is the pair that gives sum -11.
\left(4x^{2}-7x\right)+\left(-4x+7\right)
Rewrite 4x^{2}-11x+7 as \left(4x^{2}-7x\right)+\left(-4x+7\right).
x\left(4x-7\right)-\left(4x-7\right)
Factor out x in the first and -1 in the second group.
\left(4x-7\right)\left(x-1\right)
Factor out common term 4x-7 by using distributive property.
4x^{2}-11x+7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 4\times 7}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 4\times 7}}{2\times 4}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-16\times 7}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-11\right)±\sqrt{121-112}}{2\times 4}
Multiply -16 times 7.
x=\frac{-\left(-11\right)±\sqrt{9}}{2\times 4}
Add 121 to -112.
x=\frac{-\left(-11\right)±3}{2\times 4}
Take the square root of 9.
x=\frac{11±3}{2\times 4}
The opposite of -11 is 11.
x=\frac{11±3}{8}
Multiply 2 times 4.
x=\frac{14}{8}
Now solve the equation x=\frac{11±3}{8} when ± is plus. Add 11 to 3.
x=\frac{7}{4}
Reduce the fraction \frac{14}{8} to lowest terms by extracting and canceling out 2.
x=\frac{8}{8}
Now solve the equation x=\frac{11±3}{8} when ± is minus. Subtract 3 from 11.
x=1
Divide 8 by 8.
4x^{2}-11x+7=4\left(x-\frac{7}{4}\right)\left(x-1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{4} for x_{1} and 1 for x_{2}.
4x^{2}-11x+7=4\times \frac{4x-7}{4}\left(x-1\right)
Subtract \frac{7}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}-11x+7=\left(4x-7\right)\left(x-1\right)
Cancel out 4, the greatest common factor in 4 and 4.