Solve for x
x=3
x = \frac{23}{4} = 5\frac{3}{4} = 5.75
Graph
Share
Copied to clipboard
4x^{2}-1-35x=-70
Subtract 35x from both sides.
4x^{2}-1-35x+70=0
Add 70 to both sides.
4x^{2}+69-35x=0
Add -1 and 70 to get 69.
4x^{2}-35x+69=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-35 ab=4\times 69=276
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx+69. To find a and b, set up a system to be solved.
-1,-276 -2,-138 -3,-92 -4,-69 -6,-46 -12,-23
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 276.
-1-276=-277 -2-138=-140 -3-92=-95 -4-69=-73 -6-46=-52 -12-23=-35
Calculate the sum for each pair.
a=-23 b=-12
The solution is the pair that gives sum -35.
\left(4x^{2}-23x\right)+\left(-12x+69\right)
Rewrite 4x^{2}-35x+69 as \left(4x^{2}-23x\right)+\left(-12x+69\right).
x\left(4x-23\right)-3\left(4x-23\right)
Factor out x in the first and -3 in the second group.
\left(4x-23\right)\left(x-3\right)
Factor out common term 4x-23 by using distributive property.
x=\frac{23}{4} x=3
To find equation solutions, solve 4x-23=0 and x-3=0.
4x^{2}-1-35x=-70
Subtract 35x from both sides.
4x^{2}-1-35x+70=0
Add 70 to both sides.
4x^{2}+69-35x=0
Add -1 and 70 to get 69.
4x^{2}-35x+69=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times 4\times 69}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -35 for b, and 69 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-35\right)±\sqrt{1225-4\times 4\times 69}}{2\times 4}
Square -35.
x=\frac{-\left(-35\right)±\sqrt{1225-16\times 69}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-35\right)±\sqrt{1225-1104}}{2\times 4}
Multiply -16 times 69.
x=\frac{-\left(-35\right)±\sqrt{121}}{2\times 4}
Add 1225 to -1104.
x=\frac{-\left(-35\right)±11}{2\times 4}
Take the square root of 121.
x=\frac{35±11}{2\times 4}
The opposite of -35 is 35.
x=\frac{35±11}{8}
Multiply 2 times 4.
x=\frac{46}{8}
Now solve the equation x=\frac{35±11}{8} when ± is plus. Add 35 to 11.
x=\frac{23}{4}
Reduce the fraction \frac{46}{8} to lowest terms by extracting and canceling out 2.
x=\frac{24}{8}
Now solve the equation x=\frac{35±11}{8} when ± is minus. Subtract 11 from 35.
x=3
Divide 24 by 8.
x=\frac{23}{4} x=3
The equation is now solved.
4x^{2}-1-35x=-70
Subtract 35x from both sides.
4x^{2}-35x=-70+1
Add 1 to both sides.
4x^{2}-35x=-69
Add -70 and 1 to get -69.
\frac{4x^{2}-35x}{4}=-\frac{69}{4}
Divide both sides by 4.
x^{2}-\frac{35}{4}x=-\frac{69}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{35}{4}x+\left(-\frac{35}{8}\right)^{2}=-\frac{69}{4}+\left(-\frac{35}{8}\right)^{2}
Divide -\frac{35}{4}, the coefficient of the x term, by 2 to get -\frac{35}{8}. Then add the square of -\frac{35}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{4}x+\frac{1225}{64}=-\frac{69}{4}+\frac{1225}{64}
Square -\frac{35}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{4}x+\frac{1225}{64}=\frac{121}{64}
Add -\frac{69}{4} to \frac{1225}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{8}\right)^{2}=\frac{121}{64}
Factor x^{2}-\frac{35}{4}x+\frac{1225}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{8}\right)^{2}}=\sqrt{\frac{121}{64}}
Take the square root of both sides of the equation.
x-\frac{35}{8}=\frac{11}{8} x-\frac{35}{8}=-\frac{11}{8}
Simplify.
x=\frac{23}{4} x=3
Add \frac{35}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}