Solve for x (complex solution)
x=\frac{\sqrt{5}i}{2}+1\approx 1+1.118033989i
x=-\frac{\sqrt{5}i}{2}+1\approx 1-1.118033989i
Graph
Share
Copied to clipboard
4x^{2}-8x=-9
Subtract 8x from both sides.
4x^{2}-8x+9=0
Add 9 to both sides.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 9}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -8 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 9}}{2\times 4}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-16\times 9}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-8\right)±\sqrt{64-144}}{2\times 4}
Multiply -16 times 9.
x=\frac{-\left(-8\right)±\sqrt{-80}}{2\times 4}
Add 64 to -144.
x=\frac{-\left(-8\right)±4\sqrt{5}i}{2\times 4}
Take the square root of -80.
x=\frac{8±4\sqrt{5}i}{2\times 4}
The opposite of -8 is 8.
x=\frac{8±4\sqrt{5}i}{8}
Multiply 2 times 4.
x=\frac{8+4\sqrt{5}i}{8}
Now solve the equation x=\frac{8±4\sqrt{5}i}{8} when ± is plus. Add 8 to 4i\sqrt{5}.
x=\frac{\sqrt{5}i}{2}+1
Divide 8+4i\sqrt{5} by 8.
x=\frac{-4\sqrt{5}i+8}{8}
Now solve the equation x=\frac{8±4\sqrt{5}i}{8} when ± is minus. Subtract 4i\sqrt{5} from 8.
x=-\frac{\sqrt{5}i}{2}+1
Divide 8-4i\sqrt{5} by 8.
x=\frac{\sqrt{5}i}{2}+1 x=-\frac{\sqrt{5}i}{2}+1
The equation is now solved.
4x^{2}-8x=-9
Subtract 8x from both sides.
\frac{4x^{2}-8x}{4}=-\frac{9}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{8}{4}\right)x=-\frac{9}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-2x=-\frac{9}{4}
Divide -8 by 4.
x^{2}-2x+1=-\frac{9}{4}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-\frac{5}{4}
Add -\frac{9}{4} to 1.
\left(x-1\right)^{2}=-\frac{5}{4}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{5}{4}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{5}i}{2} x-1=-\frac{\sqrt{5}i}{2}
Simplify.
x=\frac{\sqrt{5}i}{2}+1 x=-\frac{\sqrt{5}i}{2}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}