Solve for x
x=80\sqrt{2}+160\approx 273.13708499
x=160-80\sqrt{2}\approx 46.86291501
Graph
Share
Copied to clipboard
4x^{2}=8\left(6400-160x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(80-x\right)^{2}.
4x^{2}=51200-1280x+8x^{2}
Use the distributive property to multiply 8 by 6400-160x+x^{2}.
4x^{2}-51200=-1280x+8x^{2}
Subtract 51200 from both sides.
4x^{2}-51200+1280x=8x^{2}
Add 1280x to both sides.
4x^{2}-51200+1280x-8x^{2}=0
Subtract 8x^{2} from both sides.
-4x^{2}-51200+1280x=0
Combine 4x^{2} and -8x^{2} to get -4x^{2}.
-4x^{2}+1280x-51200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1280±\sqrt{1280^{2}-4\left(-4\right)\left(-51200\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 1280 for b, and -51200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1280±\sqrt{1638400-4\left(-4\right)\left(-51200\right)}}{2\left(-4\right)}
Square 1280.
x=\frac{-1280±\sqrt{1638400+16\left(-51200\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-1280±\sqrt{1638400-819200}}{2\left(-4\right)}
Multiply 16 times -51200.
x=\frac{-1280±\sqrt{819200}}{2\left(-4\right)}
Add 1638400 to -819200.
x=\frac{-1280±640\sqrt{2}}{2\left(-4\right)}
Take the square root of 819200.
x=\frac{-1280±640\sqrt{2}}{-8}
Multiply 2 times -4.
x=\frac{640\sqrt{2}-1280}{-8}
Now solve the equation x=\frac{-1280±640\sqrt{2}}{-8} when ± is plus. Add -1280 to 640\sqrt{2}.
x=160-80\sqrt{2}
Divide -1280+640\sqrt{2} by -8.
x=\frac{-640\sqrt{2}-1280}{-8}
Now solve the equation x=\frac{-1280±640\sqrt{2}}{-8} when ± is minus. Subtract 640\sqrt{2} from -1280.
x=80\sqrt{2}+160
Divide -1280-640\sqrt{2} by -8.
x=160-80\sqrt{2} x=80\sqrt{2}+160
The equation is now solved.
4x^{2}=8\left(6400-160x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(80-x\right)^{2}.
4x^{2}=51200-1280x+8x^{2}
Use the distributive property to multiply 8 by 6400-160x+x^{2}.
4x^{2}+1280x=51200+8x^{2}
Add 1280x to both sides.
4x^{2}+1280x-8x^{2}=51200
Subtract 8x^{2} from both sides.
-4x^{2}+1280x=51200
Combine 4x^{2} and -8x^{2} to get -4x^{2}.
\frac{-4x^{2}+1280x}{-4}=\frac{51200}{-4}
Divide both sides by -4.
x^{2}+\frac{1280}{-4}x=\frac{51200}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-320x=\frac{51200}{-4}
Divide 1280 by -4.
x^{2}-320x=-12800
Divide 51200 by -4.
x^{2}-320x+\left(-160\right)^{2}=-12800+\left(-160\right)^{2}
Divide -320, the coefficient of the x term, by 2 to get -160. Then add the square of -160 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-320x+25600=-12800+25600
Square -160.
x^{2}-320x+25600=12800
Add -12800 to 25600.
\left(x-160\right)^{2}=12800
Factor x^{2}-320x+25600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-160\right)^{2}}=\sqrt{12800}
Take the square root of both sides of the equation.
x-160=80\sqrt{2} x-160=-80\sqrt{2}
Simplify.
x=80\sqrt{2}+160 x=160-80\sqrt{2}
Add 160 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}