Solve for x
x=4\sqrt{3}-4\approx 2.92820323
x=-4\sqrt{3}-4\approx -10.92820323
Graph
Share
Copied to clipboard
4x^{2}=2x^{2}+64-16x
Combine x^{2} and x^{2} to get 2x^{2}.
4x^{2}-2x^{2}=64-16x
Subtract 2x^{2} from both sides.
2x^{2}=64-16x
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
2x^{2}-64=-16x
Subtract 64 from both sides.
2x^{2}-64+16x=0
Add 16x to both sides.
2x^{2}+16x-64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\times 2\left(-64\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 16 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 2\left(-64\right)}}{2\times 2}
Square 16.
x=\frac{-16±\sqrt{256-8\left(-64\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-16±\sqrt{256+512}}{2\times 2}
Multiply -8 times -64.
x=\frac{-16±\sqrt{768}}{2\times 2}
Add 256 to 512.
x=\frac{-16±16\sqrt{3}}{2\times 2}
Take the square root of 768.
x=\frac{-16±16\sqrt{3}}{4}
Multiply 2 times 2.
x=\frac{16\sqrt{3}-16}{4}
Now solve the equation x=\frac{-16±16\sqrt{3}}{4} when ± is plus. Add -16 to 16\sqrt{3}.
x=4\sqrt{3}-4
Divide -16+16\sqrt{3} by 4.
x=\frac{-16\sqrt{3}-16}{4}
Now solve the equation x=\frac{-16±16\sqrt{3}}{4} when ± is minus. Subtract 16\sqrt{3} from -16.
x=-4\sqrt{3}-4
Divide -16-16\sqrt{3} by 4.
x=4\sqrt{3}-4 x=-4\sqrt{3}-4
The equation is now solved.
4x^{2}=2x^{2}+64-16x
Combine x^{2} and x^{2} to get 2x^{2}.
4x^{2}-2x^{2}=64-16x
Subtract 2x^{2} from both sides.
2x^{2}=64-16x
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
2x^{2}+16x=64
Add 16x to both sides.
\frac{2x^{2}+16x}{2}=\frac{64}{2}
Divide both sides by 2.
x^{2}+\frac{16}{2}x=\frac{64}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+8x=\frac{64}{2}
Divide 16 by 2.
x^{2}+8x=32
Divide 64 by 2.
x^{2}+8x+4^{2}=32+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=32+16
Square 4.
x^{2}+8x+16=48
Add 32 to 16.
\left(x+4\right)^{2}=48
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{48}
Take the square root of both sides of the equation.
x+4=4\sqrt{3} x+4=-4\sqrt{3}
Simplify.
x=4\sqrt{3}-4 x=-4\sqrt{3}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}