Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}=36-6x+\frac{1}{4}x^{2}+\frac{3}{4}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-\frac{1}{2}x\right)^{2}.
4x^{2}=36-6x+x^{2}
Combine \frac{1}{4}x^{2} and \frac{3}{4}x^{2} to get x^{2}.
4x^{2}-36=-6x+x^{2}
Subtract 36 from both sides.
4x^{2}-36+6x=x^{2}
Add 6x to both sides.
4x^{2}-36+6x-x^{2}=0
Subtract x^{2} from both sides.
3x^{2}-36+6x=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+6x-36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\times 3\left(-36\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 6 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 3\left(-36\right)}}{2\times 3}
Square 6.
x=\frac{-6±\sqrt{36-12\left(-36\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-6±\sqrt{36+432}}{2\times 3}
Multiply -12 times -36.
x=\frac{-6±\sqrt{468}}{2\times 3}
Add 36 to 432.
x=\frac{-6±6\sqrt{13}}{2\times 3}
Take the square root of 468.
x=\frac{-6±6\sqrt{13}}{6}
Multiply 2 times 3.
x=\frac{6\sqrt{13}-6}{6}
Now solve the equation x=\frac{-6±6\sqrt{13}}{6} when ± is plus. Add -6 to 6\sqrt{13}.
x=\sqrt{13}-1
Divide -6+6\sqrt{13} by 6.
x=\frac{-6\sqrt{13}-6}{6}
Now solve the equation x=\frac{-6±6\sqrt{13}}{6} when ± is minus. Subtract 6\sqrt{13} from -6.
x=-\sqrt{13}-1
Divide -6-6\sqrt{13} by 6.
x=\sqrt{13}-1 x=-\sqrt{13}-1
The equation is now solved.
4x^{2}=36-6x+\frac{1}{4}x^{2}+\frac{3}{4}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-\frac{1}{2}x\right)^{2}.
4x^{2}=36-6x+x^{2}
Combine \frac{1}{4}x^{2} and \frac{3}{4}x^{2} to get x^{2}.
4x^{2}+6x=36+x^{2}
Add 6x to both sides.
4x^{2}+6x-x^{2}=36
Subtract x^{2} from both sides.
3x^{2}+6x=36
Combine 4x^{2} and -x^{2} to get 3x^{2}.
\frac{3x^{2}+6x}{3}=\frac{36}{3}
Divide both sides by 3.
x^{2}+\frac{6}{3}x=\frac{36}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+2x=\frac{36}{3}
Divide 6 by 3.
x^{2}+2x=12
Divide 36 by 3.
x^{2}+2x+1^{2}=12+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=12+1
Square 1.
x^{2}+2x+1=13
Add 12 to 1.
\left(x+1\right)^{2}=13
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x+1=\sqrt{13} x+1=-\sqrt{13}
Simplify.
x=\sqrt{13}-1 x=-\sqrt{13}-1
Subtract 1 from both sides of the equation.