Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+9=81-18x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-x\right)^{2}.
4x^{2}+9-81=-18x+x^{2}
Subtract 81 from both sides.
4x^{2}-72=-18x+x^{2}
Subtract 81 from 9 to get -72.
4x^{2}-72+18x=x^{2}
Add 18x to both sides.
4x^{2}-72+18x-x^{2}=0
Subtract x^{2} from both sides.
3x^{2}-72+18x=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+18x-72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{18^{2}-4\times 3\left(-72\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 18 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 3\left(-72\right)}}{2\times 3}
Square 18.
x=\frac{-18±\sqrt{324-12\left(-72\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-18±\sqrt{324+864}}{2\times 3}
Multiply -12 times -72.
x=\frac{-18±\sqrt{1188}}{2\times 3}
Add 324 to 864.
x=\frac{-18±6\sqrt{33}}{2\times 3}
Take the square root of 1188.
x=\frac{-18±6\sqrt{33}}{6}
Multiply 2 times 3.
x=\frac{6\sqrt{33}-18}{6}
Now solve the equation x=\frac{-18±6\sqrt{33}}{6} when ± is plus. Add -18 to 6\sqrt{33}.
x=\sqrt{33}-3
Divide -18+6\sqrt{33} by 6.
x=\frac{-6\sqrt{33}-18}{6}
Now solve the equation x=\frac{-18±6\sqrt{33}}{6} when ± is minus. Subtract 6\sqrt{33} from -18.
x=-\sqrt{33}-3
Divide -18-6\sqrt{33} by 6.
x=\sqrt{33}-3 x=-\sqrt{33}-3
The equation is now solved.
4x^{2}+9=81-18x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-x\right)^{2}.
4x^{2}+9+18x=81+x^{2}
Add 18x to both sides.
4x^{2}+9+18x-x^{2}=81
Subtract x^{2} from both sides.
3x^{2}+9+18x=81
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+18x=81-9
Subtract 9 from both sides.
3x^{2}+18x=72
Subtract 9 from 81 to get 72.
\frac{3x^{2}+18x}{3}=\frac{72}{3}
Divide both sides by 3.
x^{2}+\frac{18}{3}x=\frac{72}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+6x=\frac{72}{3}
Divide 18 by 3.
x^{2}+6x=24
Divide 72 by 3.
x^{2}+6x+3^{2}=24+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=24+9
Square 3.
x^{2}+6x+9=33
Add 24 to 9.
\left(x+3\right)^{2}=33
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{33}
Take the square root of both sides of the equation.
x+3=\sqrt{33} x+3=-\sqrt{33}
Simplify.
x=\sqrt{33}-3 x=-\sqrt{33}-3
Subtract 3 from both sides of the equation.
4x^{2}+9=81-18x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-x\right)^{2}.
4x^{2}+9-81=-18x+x^{2}
Subtract 81 from both sides.
4x^{2}-72=-18x+x^{2}
Subtract 81 from 9 to get -72.
4x^{2}-72+18x=x^{2}
Add 18x to both sides.
4x^{2}-72+18x-x^{2}=0
Subtract x^{2} from both sides.
3x^{2}-72+18x=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+18x-72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{18^{2}-4\times 3\left(-72\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 18 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 3\left(-72\right)}}{2\times 3}
Square 18.
x=\frac{-18±\sqrt{324-12\left(-72\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-18±\sqrt{324+864}}{2\times 3}
Multiply -12 times -72.
x=\frac{-18±\sqrt{1188}}{2\times 3}
Add 324 to 864.
x=\frac{-18±6\sqrt{33}}{2\times 3}
Take the square root of 1188.
x=\frac{-18±6\sqrt{33}}{6}
Multiply 2 times 3.
x=\frac{6\sqrt{33}-18}{6}
Now solve the equation x=\frac{-18±6\sqrt{33}}{6} when ± is plus. Add -18 to 6\sqrt{33}.
x=\sqrt{33}-3
Divide -18+6\sqrt{33} by 6.
x=\frac{-6\sqrt{33}-18}{6}
Now solve the equation x=\frac{-18±6\sqrt{33}}{6} when ± is minus. Subtract 6\sqrt{33} from -18.
x=-\sqrt{33}-3
Divide -18-6\sqrt{33} by 6.
x=\sqrt{33}-3 x=-\sqrt{33}-3
The equation is now solved.
4x^{2}+9=81-18x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-x\right)^{2}.
4x^{2}+9+18x=81+x^{2}
Add 18x to both sides.
4x^{2}+9+18x-x^{2}=81
Subtract x^{2} from both sides.
3x^{2}+9+18x=81
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+18x=81-9
Subtract 9 from both sides.
3x^{2}+18x=72
Subtract 9 from 81 to get 72.
\frac{3x^{2}+18x}{3}=\frac{72}{3}
Divide both sides by 3.
x^{2}+\frac{18}{3}x=\frac{72}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+6x=\frac{72}{3}
Divide 18 by 3.
x^{2}+6x=24
Divide 72 by 3.
x^{2}+6x+3^{2}=24+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=24+9
Square 3.
x^{2}+6x+9=33
Add 24 to 9.
\left(x+3\right)^{2}=33
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{33}
Take the square root of both sides of the equation.
x+3=\sqrt{33} x+3=-\sqrt{33}
Simplify.
x=\sqrt{33}-3 x=-\sqrt{33}-3
Subtract 3 from both sides of the equation.