Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+8x=450
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+8x-450=450-450
Subtract 450 from both sides of the equation.
4x^{2}+8x-450=0
Subtracting 450 from itself leaves 0.
x=\frac{-8±\sqrt{8^{2}-4\times 4\left(-450\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 8 for b, and -450 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 4\left(-450\right)}}{2\times 4}
Square 8.
x=\frac{-8±\sqrt{64-16\left(-450\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-8±\sqrt{64+7200}}{2\times 4}
Multiply -16 times -450.
x=\frac{-8±\sqrt{7264}}{2\times 4}
Add 64 to 7200.
x=\frac{-8±4\sqrt{454}}{2\times 4}
Take the square root of 7264.
x=\frac{-8±4\sqrt{454}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{454}-8}{8}
Now solve the equation x=\frac{-8±4\sqrt{454}}{8} when ± is plus. Add -8 to 4\sqrt{454}.
x=\frac{\sqrt{454}}{2}-1
Divide -8+4\sqrt{454} by 8.
x=\frac{-4\sqrt{454}-8}{8}
Now solve the equation x=\frac{-8±4\sqrt{454}}{8} when ± is minus. Subtract 4\sqrt{454} from -8.
x=-\frac{\sqrt{454}}{2}-1
Divide -8-4\sqrt{454} by 8.
x=\frac{\sqrt{454}}{2}-1 x=-\frac{\sqrt{454}}{2}-1
The equation is now solved.
4x^{2}+8x=450
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+8x}{4}=\frac{450}{4}
Divide both sides by 4.
x^{2}+\frac{8}{4}x=\frac{450}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+2x=\frac{450}{4}
Divide 8 by 4.
x^{2}+2x=\frac{225}{2}
Reduce the fraction \frac{450}{4} to lowest terms by extracting and canceling out 2.
x^{2}+2x+1^{2}=\frac{225}{2}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{225}{2}+1
Square 1.
x^{2}+2x+1=\frac{227}{2}
Add \frac{225}{2} to 1.
\left(x+1\right)^{2}=\frac{227}{2}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{227}{2}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{454}}{2} x+1=-\frac{\sqrt{454}}{2}
Simplify.
x=\frac{\sqrt{454}}{2}-1 x=-\frac{\sqrt{454}}{2}-1
Subtract 1 from both sides of the equation.