Solve for x
x=\frac{\sqrt{1553}-39}{4}\approx 0.102030248
x=\frac{-\sqrt{1553}-39}{4}\approx -19.602030248
Graph
Share
Copied to clipboard
4x^{2}+82x-4x=8
Subtract 4x from both sides.
4x^{2}+78x=8
Combine 82x and -4x to get 78x.
4x^{2}+78x-8=0
Subtract 8 from both sides.
x=\frac{-78±\sqrt{78^{2}-4\times 4\left(-8\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 78 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-78±\sqrt{6084-4\times 4\left(-8\right)}}{2\times 4}
Square 78.
x=\frac{-78±\sqrt{6084-16\left(-8\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-78±\sqrt{6084+128}}{2\times 4}
Multiply -16 times -8.
x=\frac{-78±\sqrt{6212}}{2\times 4}
Add 6084 to 128.
x=\frac{-78±2\sqrt{1553}}{2\times 4}
Take the square root of 6212.
x=\frac{-78±2\sqrt{1553}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{1553}-78}{8}
Now solve the equation x=\frac{-78±2\sqrt{1553}}{8} when ± is plus. Add -78 to 2\sqrt{1553}.
x=\frac{\sqrt{1553}-39}{4}
Divide -78+2\sqrt{1553} by 8.
x=\frac{-2\sqrt{1553}-78}{8}
Now solve the equation x=\frac{-78±2\sqrt{1553}}{8} when ± is minus. Subtract 2\sqrt{1553} from -78.
x=\frac{-\sqrt{1553}-39}{4}
Divide -78-2\sqrt{1553} by 8.
x=\frac{\sqrt{1553}-39}{4} x=\frac{-\sqrt{1553}-39}{4}
The equation is now solved.
4x^{2}+82x-4x=8
Subtract 4x from both sides.
4x^{2}+78x=8
Combine 82x and -4x to get 78x.
\frac{4x^{2}+78x}{4}=\frac{8}{4}
Divide both sides by 4.
x^{2}+\frac{78}{4}x=\frac{8}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{39}{2}x=\frac{8}{4}
Reduce the fraction \frac{78}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{39}{2}x=2
Divide 8 by 4.
x^{2}+\frac{39}{2}x+\left(\frac{39}{4}\right)^{2}=2+\left(\frac{39}{4}\right)^{2}
Divide \frac{39}{2}, the coefficient of the x term, by 2 to get \frac{39}{4}. Then add the square of \frac{39}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{39}{2}x+\frac{1521}{16}=2+\frac{1521}{16}
Square \frac{39}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{39}{2}x+\frac{1521}{16}=\frac{1553}{16}
Add 2 to \frac{1521}{16}.
\left(x+\frac{39}{4}\right)^{2}=\frac{1553}{16}
Factor x^{2}+\frac{39}{2}x+\frac{1521}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{39}{4}\right)^{2}}=\sqrt{\frac{1553}{16}}
Take the square root of both sides of the equation.
x+\frac{39}{4}=\frac{\sqrt{1553}}{4} x+\frac{39}{4}=-\frac{\sqrt{1553}}{4}
Simplify.
x=\frac{\sqrt{1553}-39}{4} x=\frac{-\sqrt{1553}-39}{4}
Subtract \frac{39}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}