Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x-210=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-210\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 4 for b, and -210 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-210\right)}}{2\times 4}
Square 4.
x=\frac{-4±\sqrt{16-16\left(-210\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-4±\sqrt{16+3360}}{2\times 4}
Multiply -16 times -210.
x=\frac{-4±\sqrt{3376}}{2\times 4}
Add 16 to 3360.
x=\frac{-4±4\sqrt{211}}{2\times 4}
Take the square root of 3376.
x=\frac{-4±4\sqrt{211}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{211}-4}{8}
Now solve the equation x=\frac{-4±4\sqrt{211}}{8} when ± is plus. Add -4 to 4\sqrt{211}.
x=\frac{\sqrt{211}-1}{2}
Divide -4+4\sqrt{211} by 8.
x=\frac{-4\sqrt{211}-4}{8}
Now solve the equation x=\frac{-4±4\sqrt{211}}{8} when ± is minus. Subtract 4\sqrt{211} from -4.
x=\frac{-\sqrt{211}-1}{2}
Divide -4-4\sqrt{211} by 8.
x=\frac{\sqrt{211}-1}{2} x=\frac{-\sqrt{211}-1}{2}
The equation is now solved.
4x^{2}+4x-210=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+4x-210-\left(-210\right)=-\left(-210\right)
Add 210 to both sides of the equation.
4x^{2}+4x=-\left(-210\right)
Subtracting -210 from itself leaves 0.
4x^{2}+4x=210
Subtract -210 from 0.
\frac{4x^{2}+4x}{4}=\frac{210}{4}
Divide both sides by 4.
x^{2}+\frac{4}{4}x=\frac{210}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+x=\frac{210}{4}
Divide 4 by 4.
x^{2}+x=\frac{105}{2}
Reduce the fraction \frac{210}{4} to lowest terms by extracting and canceling out 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{105}{2}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{105}{2}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{211}{4}
Add \frac{105}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{211}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{211}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{211}}{2} x+\frac{1}{2}=-\frac{\sqrt{211}}{2}
Simplify.
x=\frac{\sqrt{211}-1}{2} x=\frac{-\sqrt{211}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.