Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=4 ab=4\left(-15\right)=-60
Factor the expression by grouping. First, the expression needs to be rewritten as 4x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Calculate the sum for each pair.
a=-6 b=10
The solution is the pair that gives sum 4.
\left(4x^{2}-6x\right)+\left(10x-15\right)
Rewrite 4x^{2}+4x-15 as \left(4x^{2}-6x\right)+\left(10x-15\right).
2x\left(2x-3\right)+5\left(2x-3\right)
Factor out 2x in the first and 5 in the second group.
\left(2x-3\right)\left(2x+5\right)
Factor out common term 2x-3 by using distributive property.
4x^{2}+4x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-15\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{16-4\times 4\left(-15\right)}}{2\times 4}
Square 4.
x=\frac{-4±\sqrt{16-16\left(-15\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-4±\sqrt{16+240}}{2\times 4}
Multiply -16 times -15.
x=\frac{-4±\sqrt{256}}{2\times 4}
Add 16 to 240.
x=\frac{-4±16}{2\times 4}
Take the square root of 256.
x=\frac{-4±16}{8}
Multiply 2 times 4.
x=\frac{12}{8}
Now solve the equation x=\frac{-4±16}{8} when ± is plus. Add -4 to 16.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{20}{8}
Now solve the equation x=\frac{-4±16}{8} when ± is minus. Subtract 16 from -4.
x=-\frac{5}{2}
Reduce the fraction \frac{-20}{8} to lowest terms by extracting and canceling out 4.
4x^{2}+4x-15=4\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and -\frac{5}{2} for x_{2}.
4x^{2}+4x-15=4\left(x-\frac{3}{2}\right)\left(x+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
4x^{2}+4x-15=4\times \frac{2x-3}{2}\left(x+\frac{5}{2}\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}+4x-15=4\times \frac{2x-3}{2}\times \frac{2x+5}{2}
Add \frac{5}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}+4x-15=4\times \frac{\left(2x-3\right)\left(2x+5\right)}{2\times 2}
Multiply \frac{2x-3}{2} times \frac{2x+5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
4x^{2}+4x-15=4\times \frac{\left(2x-3\right)\left(2x+5\right)}{4}
Multiply 2 times 2.
4x^{2}+4x-15=\left(2x-3\right)\left(2x+5\right)
Cancel out 4, the greatest common factor in 4 and 4.