Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+48x+45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-48±\sqrt{48^{2}-4\times 4\times 45}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-48±\sqrt{2304-4\times 4\times 45}}{2\times 4}
Square 48.
x=\frac{-48±\sqrt{2304-16\times 45}}{2\times 4}
Multiply -4 times 4.
x=\frac{-48±\sqrt{2304-720}}{2\times 4}
Multiply -16 times 45.
x=\frac{-48±\sqrt{1584}}{2\times 4}
Add 2304 to -720.
x=\frac{-48±12\sqrt{11}}{2\times 4}
Take the square root of 1584.
x=\frac{-48±12\sqrt{11}}{8}
Multiply 2 times 4.
x=\frac{12\sqrt{11}-48}{8}
Now solve the equation x=\frac{-48±12\sqrt{11}}{8} when ± is plus. Add -48 to 12\sqrt{11}.
x=\frac{3\sqrt{11}}{2}-6
Divide -48+12\sqrt{11} by 8.
x=\frac{-12\sqrt{11}-48}{8}
Now solve the equation x=\frac{-48±12\sqrt{11}}{8} when ± is minus. Subtract 12\sqrt{11} from -48.
x=-\frac{3\sqrt{11}}{2}-6
Divide -48-12\sqrt{11} by 8.
4x^{2}+48x+45=4\left(x-\left(\frac{3\sqrt{11}}{2}-6\right)\right)\left(x-\left(-\frac{3\sqrt{11}}{2}-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6+\frac{3\sqrt{11}}{2} for x_{1} and -6-\frac{3\sqrt{11}}{2} for x_{2}.