Solve for x
x = \frac{3 \sqrt{265} + 49}{4} \approx 24.459115447
x=\frac{49-3\sqrt{265}}{4}\approx 0.040884553
Graph
Share
Copied to clipboard
4x^{2}+4-98x=0
Subtract 98x from both sides.
4x^{2}-98x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-98\right)±\sqrt{\left(-98\right)^{2}-4\times 4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -98 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-98\right)±\sqrt{9604-4\times 4\times 4}}{2\times 4}
Square -98.
x=\frac{-\left(-98\right)±\sqrt{9604-16\times 4}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-98\right)±\sqrt{9604-64}}{2\times 4}
Multiply -16 times 4.
x=\frac{-\left(-98\right)±\sqrt{9540}}{2\times 4}
Add 9604 to -64.
x=\frac{-\left(-98\right)±6\sqrt{265}}{2\times 4}
Take the square root of 9540.
x=\frac{98±6\sqrt{265}}{2\times 4}
The opposite of -98 is 98.
x=\frac{98±6\sqrt{265}}{8}
Multiply 2 times 4.
x=\frac{6\sqrt{265}+98}{8}
Now solve the equation x=\frac{98±6\sqrt{265}}{8} when ± is plus. Add 98 to 6\sqrt{265}.
x=\frac{3\sqrt{265}+49}{4}
Divide 98+6\sqrt{265} by 8.
x=\frac{98-6\sqrt{265}}{8}
Now solve the equation x=\frac{98±6\sqrt{265}}{8} when ± is minus. Subtract 6\sqrt{265} from 98.
x=\frac{49-3\sqrt{265}}{4}
Divide 98-6\sqrt{265} by 8.
x=\frac{3\sqrt{265}+49}{4} x=\frac{49-3\sqrt{265}}{4}
The equation is now solved.
4x^{2}+4-98x=0
Subtract 98x from both sides.
4x^{2}-98x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}-98x}{4}=-\frac{4}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{98}{4}\right)x=-\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{49}{2}x=-\frac{4}{4}
Reduce the fraction \frac{-98}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{49}{2}x=-1
Divide -4 by 4.
x^{2}-\frac{49}{2}x+\left(-\frac{49}{4}\right)^{2}=-1+\left(-\frac{49}{4}\right)^{2}
Divide -\frac{49}{2}, the coefficient of the x term, by 2 to get -\frac{49}{4}. Then add the square of -\frac{49}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{49}{2}x+\frac{2401}{16}=-1+\frac{2401}{16}
Square -\frac{49}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{49}{2}x+\frac{2401}{16}=\frac{2385}{16}
Add -1 to \frac{2401}{16}.
\left(x-\frac{49}{4}\right)^{2}=\frac{2385}{16}
Factor x^{2}-\frac{49}{2}x+\frac{2401}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{49}{4}\right)^{2}}=\sqrt{\frac{2385}{16}}
Take the square root of both sides of the equation.
x-\frac{49}{4}=\frac{3\sqrt{265}}{4} x-\frac{49}{4}=-\frac{3\sqrt{265}}{4}
Simplify.
x=\frac{3\sqrt{265}+49}{4} x=\frac{49-3\sqrt{265}}{4}
Add \frac{49}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}