Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+3x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 4\left(-5\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\times 4\left(-5\right)}}{2\times 4}
Square 3.
x=\frac{-3±\sqrt{9-16\left(-5\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-3±\sqrt{9+80}}{2\times 4}
Multiply -16 times -5.
x=\frac{-3±\sqrt{89}}{2\times 4}
Add 9 to 80.
x=\frac{-3±\sqrt{89}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{89}-3}{8}
Now solve the equation x=\frac{-3±\sqrt{89}}{8} when ± is plus. Add -3 to \sqrt{89}.
x=\frac{-\sqrt{89}-3}{8}
Now solve the equation x=\frac{-3±\sqrt{89}}{8} when ± is minus. Subtract \sqrt{89} from -3.
4x^{2}+3x-5=4\left(x-\frac{\sqrt{89}-3}{8}\right)\left(x-\frac{-\sqrt{89}-3}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+\sqrt{89}}{8} for x_{1} and \frac{-3-\sqrt{89}}{8} for x_{2}.