Solve for x
x = \frac{\sqrt{202} - 9}{2} \approx 2.606335202
x=\frac{-\sqrt{202}-9}{2}\approx -11.606335202
Graph
Share
Copied to clipboard
4x^{2}+36x-121=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-36±\sqrt{36^{2}-4\times 4\left(-121\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 36 for b, and -121 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\times 4\left(-121\right)}}{2\times 4}
Square 36.
x=\frac{-36±\sqrt{1296-16\left(-121\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-36±\sqrt{1296+1936}}{2\times 4}
Multiply -16 times -121.
x=\frac{-36±\sqrt{3232}}{2\times 4}
Add 1296 to 1936.
x=\frac{-36±4\sqrt{202}}{2\times 4}
Take the square root of 3232.
x=\frac{-36±4\sqrt{202}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{202}-36}{8}
Now solve the equation x=\frac{-36±4\sqrt{202}}{8} when ± is plus. Add -36 to 4\sqrt{202}.
x=\frac{\sqrt{202}-9}{2}
Divide -36+4\sqrt{202} by 8.
x=\frac{-4\sqrt{202}-36}{8}
Now solve the equation x=\frac{-36±4\sqrt{202}}{8} when ± is minus. Subtract 4\sqrt{202} from -36.
x=\frac{-\sqrt{202}-9}{2}
Divide -36-4\sqrt{202} by 8.
x=\frac{\sqrt{202}-9}{2} x=\frac{-\sqrt{202}-9}{2}
The equation is now solved.
4x^{2}+36x-121=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+36x-121-\left(-121\right)=-\left(-121\right)
Add 121 to both sides of the equation.
4x^{2}+36x=-\left(-121\right)
Subtracting -121 from itself leaves 0.
4x^{2}+36x=121
Subtract -121 from 0.
\frac{4x^{2}+36x}{4}=\frac{121}{4}
Divide both sides by 4.
x^{2}+\frac{36}{4}x=\frac{121}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+9x=\frac{121}{4}
Divide 36 by 4.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=\frac{121}{4}+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+9x+\frac{81}{4}=\frac{121+81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+9x+\frac{81}{4}=\frac{101}{2}
Add \frac{121}{4} to \frac{81}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{9}{2}\right)^{2}=\frac{101}{2}
Factor x^{2}+9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{101}{2}}
Take the square root of both sides of the equation.
x+\frac{9}{2}=\frac{\sqrt{202}}{2} x+\frac{9}{2}=-\frac{\sqrt{202}}{2}
Simplify.
x=\frac{\sqrt{202}-9}{2} x=\frac{-\sqrt{202}-9}{2}
Subtract \frac{9}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}