Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+2x-40=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 4\left(-40\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\times 4\left(-40\right)}}{2\times 4}
Square 2.
x=\frac{-2±\sqrt{4-16\left(-40\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-2±\sqrt{4+640}}{2\times 4}
Multiply -16 times -40.
x=\frac{-2±\sqrt{644}}{2\times 4}
Add 4 to 640.
x=\frac{-2±2\sqrt{161}}{2\times 4}
Take the square root of 644.
x=\frac{-2±2\sqrt{161}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{161}-2}{8}
Now solve the equation x=\frac{-2±2\sqrt{161}}{8} when ± is plus. Add -2 to 2\sqrt{161}.
x=\frac{\sqrt{161}-1}{4}
Divide -2+2\sqrt{161} by 8.
x=\frac{-2\sqrt{161}-2}{8}
Now solve the equation x=\frac{-2±2\sqrt{161}}{8} when ± is minus. Subtract 2\sqrt{161} from -2.
x=\frac{-\sqrt{161}-1}{4}
Divide -2-2\sqrt{161} by 8.
4x^{2}+2x-40=4\left(x-\frac{\sqrt{161}-1}{4}\right)\left(x-\frac{-\sqrt{161}-1}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{161}}{4} for x_{1} and \frac{-1-\sqrt{161}}{4} for x_{2}.