Solve for x
x=\sqrt{6}-\frac{7}{2}\approx -1.050510257
x=-\sqrt{6}-\frac{7}{2}\approx -5.949489743
Graph
Share
Copied to clipboard
4x^{2}+28x+25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{28^{2}-4\times 4\times 25}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 28 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 4\times 25}}{2\times 4}
Square 28.
x=\frac{-28±\sqrt{784-16\times 25}}{2\times 4}
Multiply -4 times 4.
x=\frac{-28±\sqrt{784-400}}{2\times 4}
Multiply -16 times 25.
x=\frac{-28±\sqrt{384}}{2\times 4}
Add 784 to -400.
x=\frac{-28±8\sqrt{6}}{2\times 4}
Take the square root of 384.
x=\frac{-28±8\sqrt{6}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{6}-28}{8}
Now solve the equation x=\frac{-28±8\sqrt{6}}{8} when ± is plus. Add -28 to 8\sqrt{6}.
x=\sqrt{6}-\frac{7}{2}
Divide -28+8\sqrt{6} by 8.
x=\frac{-8\sqrt{6}-28}{8}
Now solve the equation x=\frac{-28±8\sqrt{6}}{8} when ± is minus. Subtract 8\sqrt{6} from -28.
x=-\sqrt{6}-\frac{7}{2}
Divide -28-8\sqrt{6} by 8.
x=\sqrt{6}-\frac{7}{2} x=-\sqrt{6}-\frac{7}{2}
The equation is now solved.
4x^{2}+28x+25=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+28x+25-25=-25
Subtract 25 from both sides of the equation.
4x^{2}+28x=-25
Subtracting 25 from itself leaves 0.
\frac{4x^{2}+28x}{4}=-\frac{25}{4}
Divide both sides by 4.
x^{2}+\frac{28}{4}x=-\frac{25}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+7x=-\frac{25}{4}
Divide 28 by 4.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-\frac{25}{4}+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=\frac{-25+49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=6
Add -\frac{25}{4} to \frac{49}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{2}\right)^{2}=6
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\sqrt{6} x+\frac{7}{2}=-\sqrt{6}
Simplify.
x=\sqrt{6}-\frac{7}{2} x=-\sqrt{6}-\frac{7}{2}
Subtract \frac{7}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}