Solve for x
x=5\sqrt{73}-35\approx 7.720018727
x=-5\sqrt{73}-35\approx -77.720018727
Graph
Share
Copied to clipboard
4x^{2}+280x-2400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-280±\sqrt{280^{2}-4\times 4\left(-2400\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 280 for b, and -2400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-280±\sqrt{78400-4\times 4\left(-2400\right)}}{2\times 4}
Square 280.
x=\frac{-280±\sqrt{78400-16\left(-2400\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-280±\sqrt{78400+38400}}{2\times 4}
Multiply -16 times -2400.
x=\frac{-280±\sqrt{116800}}{2\times 4}
Add 78400 to 38400.
x=\frac{-280±40\sqrt{73}}{2\times 4}
Take the square root of 116800.
x=\frac{-280±40\sqrt{73}}{8}
Multiply 2 times 4.
x=\frac{40\sqrt{73}-280}{8}
Now solve the equation x=\frac{-280±40\sqrt{73}}{8} when ± is plus. Add -280 to 40\sqrt{73}.
x=5\sqrt{73}-35
Divide -280+40\sqrt{73} by 8.
x=\frac{-40\sqrt{73}-280}{8}
Now solve the equation x=\frac{-280±40\sqrt{73}}{8} when ± is minus. Subtract 40\sqrt{73} from -280.
x=-5\sqrt{73}-35
Divide -280-40\sqrt{73} by 8.
x=5\sqrt{73}-35 x=-5\sqrt{73}-35
The equation is now solved.
4x^{2}+280x-2400=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+280x-2400-\left(-2400\right)=-\left(-2400\right)
Add 2400 to both sides of the equation.
4x^{2}+280x=-\left(-2400\right)
Subtracting -2400 from itself leaves 0.
4x^{2}+280x=2400
Subtract -2400 from 0.
\frac{4x^{2}+280x}{4}=\frac{2400}{4}
Divide both sides by 4.
x^{2}+\frac{280}{4}x=\frac{2400}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+70x=\frac{2400}{4}
Divide 280 by 4.
x^{2}+70x=600
Divide 2400 by 4.
x^{2}+70x+35^{2}=600+35^{2}
Divide 70, the coefficient of the x term, by 2 to get 35. Then add the square of 35 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+70x+1225=600+1225
Square 35.
x^{2}+70x+1225=1825
Add 600 to 1225.
\left(x+35\right)^{2}=1825
Factor x^{2}+70x+1225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+35\right)^{2}}=\sqrt{1825}
Take the square root of both sides of the equation.
x+35=5\sqrt{73} x+35=-5\sqrt{73}
Simplify.
x=5\sqrt{73}-35 x=-5\sqrt{73}-35
Subtract 35 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}