Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+26x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-26±\sqrt{26^{2}-4\times 4\left(-1\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 26 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26±\sqrt{676-4\times 4\left(-1\right)}}{2\times 4}
Square 26.
x=\frac{-26±\sqrt{676-16\left(-1\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-26±\sqrt{676+16}}{2\times 4}
Multiply -16 times -1.
x=\frac{-26±\sqrt{692}}{2\times 4}
Add 676 to 16.
x=\frac{-26±2\sqrt{173}}{2\times 4}
Take the square root of 692.
x=\frac{-26±2\sqrt{173}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{173}-26}{8}
Now solve the equation x=\frac{-26±2\sqrt{173}}{8} when ± is plus. Add -26 to 2\sqrt{173}.
x=\frac{\sqrt{173}-13}{4}
Divide -26+2\sqrt{173} by 8.
x=\frac{-2\sqrt{173}-26}{8}
Now solve the equation x=\frac{-26±2\sqrt{173}}{8} when ± is minus. Subtract 2\sqrt{173} from -26.
x=\frac{-\sqrt{173}-13}{4}
Divide -26-2\sqrt{173} by 8.
x=\frac{\sqrt{173}-13}{4} x=\frac{-\sqrt{173}-13}{4}
The equation is now solved.
4x^{2}+26x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+26x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
4x^{2}+26x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
4x^{2}+26x=1
Subtract -1 from 0.
\frac{4x^{2}+26x}{4}=\frac{1}{4}
Divide both sides by 4.
x^{2}+\frac{26}{4}x=\frac{1}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{13}{2}x=\frac{1}{4}
Reduce the fraction \frac{26}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{13}{2}x+\left(\frac{13}{4}\right)^{2}=\frac{1}{4}+\left(\frac{13}{4}\right)^{2}
Divide \frac{13}{2}, the coefficient of the x term, by 2 to get \frac{13}{4}. Then add the square of \frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{2}x+\frac{169}{16}=\frac{1}{4}+\frac{169}{16}
Square \frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{2}x+\frac{169}{16}=\frac{173}{16}
Add \frac{1}{4} to \frac{169}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{4}\right)^{2}=\frac{173}{16}
Factor x^{2}+\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{4}\right)^{2}}=\sqrt{\frac{173}{16}}
Take the square root of both sides of the equation.
x+\frac{13}{4}=\frac{\sqrt{173}}{4} x+\frac{13}{4}=-\frac{\sqrt{173}}{4}
Simplify.
x=\frac{\sqrt{173}-13}{4} x=\frac{-\sqrt{173}-13}{4}
Subtract \frac{13}{4} from both sides of the equation.