Solve for x
x=\frac{\sqrt{30}}{2}-3\approx -0.261387212
x=-\frac{\sqrt{30}}{2}-3\approx -5.738612788
Graph
Share
Copied to clipboard
4x^{2}+24x+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-24±\sqrt{24^{2}-4\times 4\times 6}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 24 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 4\times 6}}{2\times 4}
Square 24.
x=\frac{-24±\sqrt{576-16\times 6}}{2\times 4}
Multiply -4 times 4.
x=\frac{-24±\sqrt{576-96}}{2\times 4}
Multiply -16 times 6.
x=\frac{-24±\sqrt{480}}{2\times 4}
Add 576 to -96.
x=\frac{-24±4\sqrt{30}}{2\times 4}
Take the square root of 480.
x=\frac{-24±4\sqrt{30}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{30}-24}{8}
Now solve the equation x=\frac{-24±4\sqrt{30}}{8} when ± is plus. Add -24 to 4\sqrt{30}.
x=\frac{\sqrt{30}}{2}-3
Divide -24+4\sqrt{30} by 8.
x=\frac{-4\sqrt{30}-24}{8}
Now solve the equation x=\frac{-24±4\sqrt{30}}{8} when ± is minus. Subtract 4\sqrt{30} from -24.
x=-\frac{\sqrt{30}}{2}-3
Divide -24-4\sqrt{30} by 8.
x=\frac{\sqrt{30}}{2}-3 x=-\frac{\sqrt{30}}{2}-3
The equation is now solved.
4x^{2}+24x+6=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+24x+6-6=-6
Subtract 6 from both sides of the equation.
4x^{2}+24x=-6
Subtracting 6 from itself leaves 0.
\frac{4x^{2}+24x}{4}=-\frac{6}{4}
Divide both sides by 4.
x^{2}+\frac{24}{4}x=-\frac{6}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+6x=-\frac{6}{4}
Divide 24 by 4.
x^{2}+6x=-\frac{3}{2}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
x^{2}+6x+3^{2}=-\frac{3}{2}+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=-\frac{3}{2}+9
Square 3.
x^{2}+6x+9=\frac{15}{2}
Add -\frac{3}{2} to 9.
\left(x+3\right)^{2}=\frac{15}{2}
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{\frac{15}{2}}
Take the square root of both sides of the equation.
x+3=\frac{\sqrt{30}}{2} x+3=-\frac{\sqrt{30}}{2}
Simplify.
x=\frac{\sqrt{30}}{2}-3 x=-\frac{\sqrt{30}}{2}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}