Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=21 ab=4\left(-49\right)=-196
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-49. To find a and b, set up a system to be solved.
-1,196 -2,98 -4,49 -7,28 -14,14
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -196.
-1+196=195 -2+98=96 -4+49=45 -7+28=21 -14+14=0
Calculate the sum for each pair.
a=-7 b=28
The solution is the pair that gives sum 21.
\left(4x^{2}-7x\right)+\left(28x-49\right)
Rewrite 4x^{2}+21x-49 as \left(4x^{2}-7x\right)+\left(28x-49\right).
x\left(4x-7\right)+7\left(4x-7\right)
Factor out x in the first and 7 in the second group.
\left(4x-7\right)\left(x+7\right)
Factor out common term 4x-7 by using distributive property.
x=\frac{7}{4} x=-7
To find equation solutions, solve 4x-7=0 and x+7=0.
4x^{2}+21x-49=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-21±\sqrt{21^{2}-4\times 4\left(-49\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 21 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-21±\sqrt{441-4\times 4\left(-49\right)}}{2\times 4}
Square 21.
x=\frac{-21±\sqrt{441-16\left(-49\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-21±\sqrt{441+784}}{2\times 4}
Multiply -16 times -49.
x=\frac{-21±\sqrt{1225}}{2\times 4}
Add 441 to 784.
x=\frac{-21±35}{2\times 4}
Take the square root of 1225.
x=\frac{-21±35}{8}
Multiply 2 times 4.
x=\frac{14}{8}
Now solve the equation x=\frac{-21±35}{8} when ± is plus. Add -21 to 35.
x=\frac{7}{4}
Reduce the fraction \frac{14}{8} to lowest terms by extracting and canceling out 2.
x=-\frac{56}{8}
Now solve the equation x=\frac{-21±35}{8} when ± is minus. Subtract 35 from -21.
x=-7
Divide -56 by 8.
x=\frac{7}{4} x=-7
The equation is now solved.
4x^{2}+21x-49=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+21x-49-\left(-49\right)=-\left(-49\right)
Add 49 to both sides of the equation.
4x^{2}+21x=-\left(-49\right)
Subtracting -49 from itself leaves 0.
4x^{2}+21x=49
Subtract -49 from 0.
\frac{4x^{2}+21x}{4}=\frac{49}{4}
Divide both sides by 4.
x^{2}+\frac{21}{4}x=\frac{49}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{21}{4}x+\left(\frac{21}{8}\right)^{2}=\frac{49}{4}+\left(\frac{21}{8}\right)^{2}
Divide \frac{21}{4}, the coefficient of the x term, by 2 to get \frac{21}{8}. Then add the square of \frac{21}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{21}{4}x+\frac{441}{64}=\frac{49}{4}+\frac{441}{64}
Square \frac{21}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{21}{4}x+\frac{441}{64}=\frac{1225}{64}
Add \frac{49}{4} to \frac{441}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{21}{8}\right)^{2}=\frac{1225}{64}
Factor x^{2}+\frac{21}{4}x+\frac{441}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{21}{8}\right)^{2}}=\sqrt{\frac{1225}{64}}
Take the square root of both sides of the equation.
x+\frac{21}{8}=\frac{35}{8} x+\frac{21}{8}=-\frac{35}{8}
Simplify.
x=\frac{7}{4} x=-7
Subtract \frac{21}{8} from both sides of the equation.