Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+21x-36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-21±\sqrt{21^{2}-4\times 4\left(-36\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-21±\sqrt{441-4\times 4\left(-36\right)}}{2\times 4}
Square 21.
x=\frac{-21±\sqrt{441-16\left(-36\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-21±\sqrt{441+576}}{2\times 4}
Multiply -16 times -36.
x=\frac{-21±\sqrt{1017}}{2\times 4}
Add 441 to 576.
x=\frac{-21±3\sqrt{113}}{2\times 4}
Take the square root of 1017.
x=\frac{-21±3\sqrt{113}}{8}
Multiply 2 times 4.
x=\frac{3\sqrt{113}-21}{8}
Now solve the equation x=\frac{-21±3\sqrt{113}}{8} when ± is plus. Add -21 to 3\sqrt{113}.
x=\frac{-3\sqrt{113}-21}{8}
Now solve the equation x=\frac{-21±3\sqrt{113}}{8} when ± is minus. Subtract 3\sqrt{113} from -21.
4x^{2}+21x-36=4\left(x-\frac{3\sqrt{113}-21}{8}\right)\left(x-\frac{-3\sqrt{113}-21}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-21+3\sqrt{113}}{8} for x_{1} and \frac{-21-3\sqrt{113}}{8} for x_{2}.