Solve for x
x = \frac{\sqrt{57} - 5}{2} \approx 1.274917218
x=\frac{-\sqrt{57}-5}{2}\approx -6.274917218
Graph
Share
Copied to clipboard
4x^{2}+20x-32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\times 4\left(-32\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 20 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 4\left(-32\right)}}{2\times 4}
Square 20.
x=\frac{-20±\sqrt{400-16\left(-32\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-20±\sqrt{400+512}}{2\times 4}
Multiply -16 times -32.
x=\frac{-20±\sqrt{912}}{2\times 4}
Add 400 to 512.
x=\frac{-20±4\sqrt{57}}{2\times 4}
Take the square root of 912.
x=\frac{-20±4\sqrt{57}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{57}-20}{8}
Now solve the equation x=\frac{-20±4\sqrt{57}}{8} when ± is plus. Add -20 to 4\sqrt{57}.
x=\frac{\sqrt{57}-5}{2}
Divide -20+4\sqrt{57} by 8.
x=\frac{-4\sqrt{57}-20}{8}
Now solve the equation x=\frac{-20±4\sqrt{57}}{8} when ± is minus. Subtract 4\sqrt{57} from -20.
x=\frac{-\sqrt{57}-5}{2}
Divide -20-4\sqrt{57} by 8.
x=\frac{\sqrt{57}-5}{2} x=\frac{-\sqrt{57}-5}{2}
The equation is now solved.
4x^{2}+20x-32=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+20x-32-\left(-32\right)=-\left(-32\right)
Add 32 to both sides of the equation.
4x^{2}+20x=-\left(-32\right)
Subtracting -32 from itself leaves 0.
4x^{2}+20x=32
Subtract -32 from 0.
\frac{4x^{2}+20x}{4}=\frac{32}{4}
Divide both sides by 4.
x^{2}+\frac{20}{4}x=\frac{32}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+5x=\frac{32}{4}
Divide 20 by 4.
x^{2}+5x=8
Divide 32 by 4.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=8+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=8+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{57}{4}
Add 8 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{57}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{57}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{57}}{2} x+\frac{5}{2}=-\frac{\sqrt{57}}{2}
Simplify.
x=\frac{\sqrt{57}-5}{2} x=\frac{-\sqrt{57}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}