Solve for x (complex solution)
x=\frac{\sqrt{209}i}{2}-2\approx -2+7.228416147i
x=-\frac{\sqrt{209}i}{2}-2\approx -2-7.228416147i
Graph
Share
Copied to clipboard
4x^{2}+16x+225=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\times 4\times 225}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 16 for b, and 225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 4\times 225}}{2\times 4}
Square 16.
x=\frac{-16±\sqrt{256-16\times 225}}{2\times 4}
Multiply -4 times 4.
x=\frac{-16±\sqrt{256-3600}}{2\times 4}
Multiply -16 times 225.
x=\frac{-16±\sqrt{-3344}}{2\times 4}
Add 256 to -3600.
x=\frac{-16±4\sqrt{209}i}{2\times 4}
Take the square root of -3344.
x=\frac{-16±4\sqrt{209}i}{8}
Multiply 2 times 4.
x=\frac{-16+4\sqrt{209}i}{8}
Now solve the equation x=\frac{-16±4\sqrt{209}i}{8} when ± is plus. Add -16 to 4i\sqrt{209}.
x=\frac{\sqrt{209}i}{2}-2
Divide -16+4i\sqrt{209} by 8.
x=\frac{-4\sqrt{209}i-16}{8}
Now solve the equation x=\frac{-16±4\sqrt{209}i}{8} when ± is minus. Subtract 4i\sqrt{209} from -16.
x=-\frac{\sqrt{209}i}{2}-2
Divide -16-4i\sqrt{209} by 8.
x=\frac{\sqrt{209}i}{2}-2 x=-\frac{\sqrt{209}i}{2}-2
The equation is now solved.
4x^{2}+16x+225=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+16x+225-225=-225
Subtract 225 from both sides of the equation.
4x^{2}+16x=-225
Subtracting 225 from itself leaves 0.
\frac{4x^{2}+16x}{4}=-\frac{225}{4}
Divide both sides by 4.
x^{2}+\frac{16}{4}x=-\frac{225}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+4x=-\frac{225}{4}
Divide 16 by 4.
x^{2}+4x+2^{2}=-\frac{225}{4}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-\frac{225}{4}+4
Square 2.
x^{2}+4x+4=-\frac{209}{4}
Add -\frac{225}{4} to 4.
\left(x+2\right)^{2}=-\frac{209}{4}
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-\frac{209}{4}}
Take the square root of both sides of the equation.
x+2=\frac{\sqrt{209}i}{2} x+2=-\frac{\sqrt{209}i}{2}
Simplify.
x=\frac{\sqrt{209}i}{2}-2 x=-\frac{\sqrt{209}i}{2}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}