Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+16x+14+2=0
Add 2 to both sides.
4x^{2}+16x+16=0
Add 14 and 2 to get 16.
x^{2}+4x+4=0
Divide both sides by 4.
a+b=4 ab=1\times 4=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=2 b=2
The solution is the pair that gives sum 4.
\left(x^{2}+2x\right)+\left(2x+4\right)
Rewrite x^{2}+4x+4 as \left(x^{2}+2x\right)+\left(2x+4\right).
x\left(x+2\right)+2\left(x+2\right)
Factor out x in the first and 2 in the second group.
\left(x+2\right)\left(x+2\right)
Factor out common term x+2 by using distributive property.
\left(x+2\right)^{2}
Rewrite as a binomial square.
x=-2
To find equation solution, solve x+2=0.
4x^{2}+16x+14=-2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+16x+14-\left(-2\right)=-2-\left(-2\right)
Add 2 to both sides of the equation.
4x^{2}+16x+14-\left(-2\right)=0
Subtracting -2 from itself leaves 0.
4x^{2}+16x+16=0
Subtract -2 from 14.
x=\frac{-16±\sqrt{16^{2}-4\times 4\times 16}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 16 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 4\times 16}}{2\times 4}
Square 16.
x=\frac{-16±\sqrt{256-16\times 16}}{2\times 4}
Multiply -4 times 4.
x=\frac{-16±\sqrt{256-256}}{2\times 4}
Multiply -16 times 16.
x=\frac{-16±\sqrt{0}}{2\times 4}
Add 256 to -256.
x=-\frac{16}{2\times 4}
Take the square root of 0.
x=-\frac{16}{8}
Multiply 2 times 4.
x=-2
Divide -16 by 8.
4x^{2}+16x+14=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+16x+14-14=-2-14
Subtract 14 from both sides of the equation.
4x^{2}+16x=-2-14
Subtracting 14 from itself leaves 0.
4x^{2}+16x=-16
Subtract 14 from -2.
\frac{4x^{2}+16x}{4}=-\frac{16}{4}
Divide both sides by 4.
x^{2}+\frac{16}{4}x=-\frac{16}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+4x=-\frac{16}{4}
Divide 16 by 4.
x^{2}+4x=-4
Divide -16 by 4.
x^{2}+4x+2^{2}=-4+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-4+4
Square 2.
x^{2}+4x+4=0
Add -4 to 4.
\left(x+2\right)^{2}=0
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x+2=0 x+2=0
Simplify.
x=-2 x=-2
Subtract 2 from both sides of the equation.
x=-2
The equation is now solved. Solutions are the same.