Solve for x (complex solution)
x=\frac{-3+\sqrt{31}i}{2}\approx -1.5+2.783882181i
x=\frac{-\sqrt{31}i-3}{2}\approx -1.5-2.783882181i
Graph
Share
Copied to clipboard
4x^{2}+12x+40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 4\times 40}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 12 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 4\times 40}}{2\times 4}
Square 12.
x=\frac{-12±\sqrt{144-16\times 40}}{2\times 4}
Multiply -4 times 4.
x=\frac{-12±\sqrt{144-640}}{2\times 4}
Multiply -16 times 40.
x=\frac{-12±\sqrt{-496}}{2\times 4}
Add 144 to -640.
x=\frac{-12±4\sqrt{31}i}{2\times 4}
Take the square root of -496.
x=\frac{-12±4\sqrt{31}i}{8}
Multiply 2 times 4.
x=\frac{-12+4\sqrt{31}i}{8}
Now solve the equation x=\frac{-12±4\sqrt{31}i}{8} when ± is plus. Add -12 to 4i\sqrt{31}.
x=\frac{-3+\sqrt{31}i}{2}
Divide -12+4i\sqrt{31} by 8.
x=\frac{-4\sqrt{31}i-12}{8}
Now solve the equation x=\frac{-12±4\sqrt{31}i}{8} when ± is minus. Subtract 4i\sqrt{31} from -12.
x=\frac{-\sqrt{31}i-3}{2}
Divide -12-4i\sqrt{31} by 8.
x=\frac{-3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-3}{2}
The equation is now solved.
4x^{2}+12x+40=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+12x+40-40=-40
Subtract 40 from both sides of the equation.
4x^{2}+12x=-40
Subtracting 40 from itself leaves 0.
\frac{4x^{2}+12x}{4}=-\frac{40}{4}
Divide both sides by 4.
x^{2}+\frac{12}{4}x=-\frac{40}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+3x=-\frac{40}{4}
Divide 12 by 4.
x^{2}+3x=-10
Divide -40 by 4.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-10+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-10+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{31}{4}
Add -10 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{31}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{31}i}{2} x+\frac{3}{2}=-\frac{\sqrt{31}i}{2}
Simplify.
x=\frac{-3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}