Solve for x (complex solution)
x=\sqrt{227}-14\approx 1.066519173
x=-\left(\sqrt{227}+14\right)\approx -29.066519173
Solve for x
x=\sqrt{227}-14\approx 1.066519173
x=-\sqrt{227}-14\approx -29.066519173
Graph
Share
Copied to clipboard
4x^{2}+112x=124
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+112x-124=124-124
Subtract 124 from both sides of the equation.
4x^{2}+112x-124=0
Subtracting 124 from itself leaves 0.
x=\frac{-112±\sqrt{112^{2}-4\times 4\left(-124\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 112 for b, and -124 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-112±\sqrt{12544-4\times 4\left(-124\right)}}{2\times 4}
Square 112.
x=\frac{-112±\sqrt{12544-16\left(-124\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-112±\sqrt{12544+1984}}{2\times 4}
Multiply -16 times -124.
x=\frac{-112±\sqrt{14528}}{2\times 4}
Add 12544 to 1984.
x=\frac{-112±8\sqrt{227}}{2\times 4}
Take the square root of 14528.
x=\frac{-112±8\sqrt{227}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{227}-112}{8}
Now solve the equation x=\frac{-112±8\sqrt{227}}{8} when ± is plus. Add -112 to 8\sqrt{227}.
x=\sqrt{227}-14
Divide -112+8\sqrt{227} by 8.
x=\frac{-8\sqrt{227}-112}{8}
Now solve the equation x=\frac{-112±8\sqrt{227}}{8} when ± is minus. Subtract 8\sqrt{227} from -112.
x=-\sqrt{227}-14
Divide -112-8\sqrt{227} by 8.
x=\sqrt{227}-14 x=-\sqrt{227}-14
The equation is now solved.
4x^{2}+112x=124
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+112x}{4}=\frac{124}{4}
Divide both sides by 4.
x^{2}+\frac{112}{4}x=\frac{124}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+28x=\frac{124}{4}
Divide 112 by 4.
x^{2}+28x=31
Divide 124 by 4.
x^{2}+28x+14^{2}=31+14^{2}
Divide 28, the coefficient of the x term, by 2 to get 14. Then add the square of 14 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+28x+196=31+196
Square 14.
x^{2}+28x+196=227
Add 31 to 196.
\left(x+14\right)^{2}=227
Factor x^{2}+28x+196. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+14\right)^{2}}=\sqrt{227}
Take the square root of both sides of the equation.
x+14=\sqrt{227} x+14=-\sqrt{227}
Simplify.
x=\sqrt{227}-14 x=-\sqrt{227}-14
Subtract 14 from both sides of the equation.
4x^{2}+112x=124
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+112x-124=124-124
Subtract 124 from both sides of the equation.
4x^{2}+112x-124=0
Subtracting 124 from itself leaves 0.
x=\frac{-112±\sqrt{112^{2}-4\times 4\left(-124\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 112 for b, and -124 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-112±\sqrt{12544-4\times 4\left(-124\right)}}{2\times 4}
Square 112.
x=\frac{-112±\sqrt{12544-16\left(-124\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-112±\sqrt{12544+1984}}{2\times 4}
Multiply -16 times -124.
x=\frac{-112±\sqrt{14528}}{2\times 4}
Add 12544 to 1984.
x=\frac{-112±8\sqrt{227}}{2\times 4}
Take the square root of 14528.
x=\frac{-112±8\sqrt{227}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{227}-112}{8}
Now solve the equation x=\frac{-112±8\sqrt{227}}{8} when ± is plus. Add -112 to 8\sqrt{227}.
x=\sqrt{227}-14
Divide -112+8\sqrt{227} by 8.
x=\frac{-8\sqrt{227}-112}{8}
Now solve the equation x=\frac{-112±8\sqrt{227}}{8} when ± is minus. Subtract 8\sqrt{227} from -112.
x=-\sqrt{227}-14
Divide -112-8\sqrt{227} by 8.
x=\sqrt{227}-14 x=-\sqrt{227}-14
The equation is now solved.
4x^{2}+112x=124
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+112x}{4}=\frac{124}{4}
Divide both sides by 4.
x^{2}+\frac{112}{4}x=\frac{124}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+28x=\frac{124}{4}
Divide 112 by 4.
x^{2}+28x=31
Divide 124 by 4.
x^{2}+28x+14^{2}=31+14^{2}
Divide 28, the coefficient of the x term, by 2 to get 14. Then add the square of 14 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+28x+196=31+196
Square 14.
x^{2}+28x+196=227
Add 31 to 196.
\left(x+14\right)^{2}=227
Factor x^{2}+28x+196. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+14\right)^{2}}=\sqrt{227}
Take the square root of both sides of the equation.
x+14=\sqrt{227} x+14=-\sqrt{227}
Simplify.
x=\sqrt{227}-14 x=-\sqrt{227}-14
Subtract 14 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}