Solve for t
t=-1
t=\frac{1}{4}=0.25
Share
Copied to clipboard
4t^{2}+3t-1=0
Subtract 1 from both sides.
a+b=3 ab=4\left(-1\right)=-4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4t^{2}+at+bt-1. To find a and b, set up a system to be solved.
-1,4 -2,2
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -4.
-1+4=3 -2+2=0
Calculate the sum for each pair.
a=-1 b=4
The solution is the pair that gives sum 3.
\left(4t^{2}-t\right)+\left(4t-1\right)
Rewrite 4t^{2}+3t-1 as \left(4t^{2}-t\right)+\left(4t-1\right).
t\left(4t-1\right)+4t-1
Factor out t in 4t^{2}-t.
\left(4t-1\right)\left(t+1\right)
Factor out common term 4t-1 by using distributive property.
t=\frac{1}{4} t=-1
To find equation solutions, solve 4t-1=0 and t+1=0.
4t^{2}+3t=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4t^{2}+3t-1=1-1
Subtract 1 from both sides of the equation.
4t^{2}+3t-1=0
Subtracting 1 from itself leaves 0.
t=\frac{-3±\sqrt{3^{2}-4\times 4\left(-1\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 3 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-3±\sqrt{9-4\times 4\left(-1\right)}}{2\times 4}
Square 3.
t=\frac{-3±\sqrt{9-16\left(-1\right)}}{2\times 4}
Multiply -4 times 4.
t=\frac{-3±\sqrt{9+16}}{2\times 4}
Multiply -16 times -1.
t=\frac{-3±\sqrt{25}}{2\times 4}
Add 9 to 16.
t=\frac{-3±5}{2\times 4}
Take the square root of 25.
t=\frac{-3±5}{8}
Multiply 2 times 4.
t=\frac{2}{8}
Now solve the equation t=\frac{-3±5}{8} when ± is plus. Add -3 to 5.
t=\frac{1}{4}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
t=-\frac{8}{8}
Now solve the equation t=\frac{-3±5}{8} when ± is minus. Subtract 5 from -3.
t=-1
Divide -8 by 8.
t=\frac{1}{4} t=-1
The equation is now solved.
4t^{2}+3t=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4t^{2}+3t}{4}=\frac{1}{4}
Divide both sides by 4.
t^{2}+\frac{3}{4}t=\frac{1}{4}
Dividing by 4 undoes the multiplication by 4.
t^{2}+\frac{3}{4}t+\left(\frac{3}{8}\right)^{2}=\frac{1}{4}+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{3}{4}t+\frac{9}{64}=\frac{1}{4}+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{3}{4}t+\frac{9}{64}=\frac{25}{64}
Add \frac{1}{4} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{3}{8}\right)^{2}=\frac{25}{64}
Factor t^{2}+\frac{3}{4}t+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{3}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
Take the square root of both sides of the equation.
t+\frac{3}{8}=\frac{5}{8} t+\frac{3}{8}=-\frac{5}{8}
Simplify.
t=\frac{1}{4} t=-1
Subtract \frac{3}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}