Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a+b=8 ab=4\times 3=12
Factor the expression by grouping. First, the expression needs to be rewritten as 4m^{2}+am+bm+3. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=2 b=6
The solution is the pair that gives sum 8.
\left(4m^{2}+2m\right)+\left(6m+3\right)
Rewrite 4m^{2}+8m+3 as \left(4m^{2}+2m\right)+\left(6m+3\right).
2m\left(2m+1\right)+3\left(2m+1\right)
Factor out 2m in the first and 3 in the second group.
\left(2m+1\right)\left(2m+3\right)
Factor out common term 2m+1 by using distributive property.
4m^{2}+8m+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-8±\sqrt{8^{2}-4\times 4\times 3}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-8±\sqrt{64-4\times 4\times 3}}{2\times 4}
Square 8.
m=\frac{-8±\sqrt{64-16\times 3}}{2\times 4}
Multiply -4 times 4.
m=\frac{-8±\sqrt{64-48}}{2\times 4}
Multiply -16 times 3.
m=\frac{-8±\sqrt{16}}{2\times 4}
Add 64 to -48.
m=\frac{-8±4}{2\times 4}
Take the square root of 16.
m=\frac{-8±4}{8}
Multiply 2 times 4.
m=-\frac{4}{8}
Now solve the equation m=\frac{-8±4}{8} when ± is plus. Add -8 to 4.
m=-\frac{1}{2}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
m=-\frac{12}{8}
Now solve the equation m=\frac{-8±4}{8} when ± is minus. Subtract 4 from -8.
m=-\frac{3}{2}
Reduce the fraction \frac{-12}{8} to lowest terms by extracting and canceling out 4.
4m^{2}+8m+3=4\left(m-\left(-\frac{1}{2}\right)\right)\left(m-\left(-\frac{3}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{2} for x_{1} and -\frac{3}{2} for x_{2}.
4m^{2}+8m+3=4\left(m+\frac{1}{2}\right)\left(m+\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
4m^{2}+8m+3=4\times \frac{2m+1}{2}\left(m+\frac{3}{2}\right)
Add \frac{1}{2} to m by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
4m^{2}+8m+3=4\times \frac{2m+1}{2}\times \frac{2m+3}{2}
Add \frac{3}{2} to m by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
4m^{2}+8m+3=4\times \frac{\left(2m+1\right)\left(2m+3\right)}{2\times 2}
Multiply \frac{2m+1}{2} times \frac{2m+3}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
4m^{2}+8m+3=4\times \frac{\left(2m+1\right)\left(2m+3\right)}{4}
Multiply 2 times 2.
4m^{2}+8m+3=\left(2m+1\right)\left(2m+3\right)
Cancel out 4, the greatest common factor in 4 and 4.