Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

4a^{2}-5a+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\times 2}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -5 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-5\right)±\sqrt{25-4\times 4\times 2}}{2\times 4}
Square -5.
a=\frac{-\left(-5\right)±\sqrt{25-16\times 2}}{2\times 4}
Multiply -4 times 4.
a=\frac{-\left(-5\right)±\sqrt{25-32}}{2\times 4}
Multiply -16 times 2.
a=\frac{-\left(-5\right)±\sqrt{-7}}{2\times 4}
Add 25 to -32.
a=\frac{-\left(-5\right)±\sqrt{7}i}{2\times 4}
Take the square root of -7.
a=\frac{5±\sqrt{7}i}{2\times 4}
The opposite of -5 is 5.
a=\frac{5±\sqrt{7}i}{8}
Multiply 2 times 4.
a=\frac{5+\sqrt{7}i}{8}
Now solve the equation a=\frac{5±\sqrt{7}i}{8} when ± is plus. Add 5 to i\sqrt{7}.
a=\frac{-\sqrt{7}i+5}{8}
Now solve the equation a=\frac{5±\sqrt{7}i}{8} when ± is minus. Subtract i\sqrt{7} from 5.
a=\frac{5+\sqrt{7}i}{8} a=\frac{-\sqrt{7}i+5}{8}
The equation is now solved.
4a^{2}-5a+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4a^{2}-5a+2-2=-2
Subtract 2 from both sides of the equation.
4a^{2}-5a=-2
Subtracting 2 from itself leaves 0.
\frac{4a^{2}-5a}{4}=-\frac{2}{4}
Divide both sides by 4.
a^{2}-\frac{5}{4}a=-\frac{2}{4}
Dividing by 4 undoes the multiplication by 4.
a^{2}-\frac{5}{4}a=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
a^{2}-\frac{5}{4}a+\left(-\frac{5}{8}\right)^{2}=-\frac{1}{2}+\left(-\frac{5}{8}\right)^{2}
Divide -\frac{5}{4}, the coefficient of the x term, by 2 to get -\frac{5}{8}. Then add the square of -\frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{5}{4}a+\frac{25}{64}=-\frac{1}{2}+\frac{25}{64}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{5}{4}a+\frac{25}{64}=-\frac{7}{64}
Add -\frac{1}{2} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{5}{8}\right)^{2}=-\frac{7}{64}
Factor a^{2}-\frac{5}{4}a+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{8}\right)^{2}}=\sqrt{-\frac{7}{64}}
Take the square root of both sides of the equation.
a-\frac{5}{8}=\frac{\sqrt{7}i}{8} a-\frac{5}{8}=-\frac{\sqrt{7}i}{8}
Simplify.
a=\frac{5+\sqrt{7}i}{8} a=\frac{-\sqrt{7}i+5}{8}
Add \frac{5}{8} to both sides of the equation.