Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4a^{2}-11a-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 4\left(-5\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-11\right)±\sqrt{121-4\times 4\left(-5\right)}}{2\times 4}
Square -11.
a=\frac{-\left(-11\right)±\sqrt{121-16\left(-5\right)}}{2\times 4}
Multiply -4 times 4.
a=\frac{-\left(-11\right)±\sqrt{121+80}}{2\times 4}
Multiply -16 times -5.
a=\frac{-\left(-11\right)±\sqrt{201}}{2\times 4}
Add 121 to 80.
a=\frac{11±\sqrt{201}}{2\times 4}
The opposite of -11 is 11.
a=\frac{11±\sqrt{201}}{8}
Multiply 2 times 4.
a=\frac{\sqrt{201}+11}{8}
Now solve the equation a=\frac{11±\sqrt{201}}{8} when ± is plus. Add 11 to \sqrt{201}.
a=\frac{11-\sqrt{201}}{8}
Now solve the equation a=\frac{11±\sqrt{201}}{8} when ± is minus. Subtract \sqrt{201} from 11.
4a^{2}-11a-5=4\left(a-\frac{\sqrt{201}+11}{8}\right)\left(a-\frac{11-\sqrt{201}}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11+\sqrt{201}}{8} for x_{1} and \frac{11-\sqrt{201}}{8} for x_{2}.