Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(a^{2}+a-20\right)
Factor out 4.
p+q=1 pq=1\left(-20\right)=-20
Consider a^{2}+a-20. Factor the expression by grouping. First, the expression needs to be rewritten as a^{2}+pa+qa-20. To find p and q, set up a system to be solved.
-1,20 -2,10 -4,5
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -20.
-1+20=19 -2+10=8 -4+5=1
Calculate the sum for each pair.
p=-4 q=5
The solution is the pair that gives sum 1.
\left(a^{2}-4a\right)+\left(5a-20\right)
Rewrite a^{2}+a-20 as \left(a^{2}-4a\right)+\left(5a-20\right).
a\left(a-4\right)+5\left(a-4\right)
Factor out a in the first and 5 in the second group.
\left(a-4\right)\left(a+5\right)
Factor out common term a-4 by using distributive property.
4\left(a-4\right)\left(a+5\right)
Rewrite the complete factored expression.
4a^{2}+4a-80=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-4±\sqrt{4^{2}-4\times 4\left(-80\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-4±\sqrt{16-4\times 4\left(-80\right)}}{2\times 4}
Square 4.
a=\frac{-4±\sqrt{16-16\left(-80\right)}}{2\times 4}
Multiply -4 times 4.
a=\frac{-4±\sqrt{16+1280}}{2\times 4}
Multiply -16 times -80.
a=\frac{-4±\sqrt{1296}}{2\times 4}
Add 16 to 1280.
a=\frac{-4±36}{2\times 4}
Take the square root of 1296.
a=\frac{-4±36}{8}
Multiply 2 times 4.
a=\frac{32}{8}
Now solve the equation a=\frac{-4±36}{8} when ± is plus. Add -4 to 36.
a=4
Divide 32 by 8.
a=-\frac{40}{8}
Now solve the equation a=\frac{-4±36}{8} when ± is minus. Subtract 36 from -4.
a=-5
Divide -40 by 8.
4a^{2}+4a-80=4\left(a-4\right)\left(a-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and -5 for x_{2}.
4a^{2}+4a-80=4\left(a-4\right)\left(a+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.