Factor
4\left(a-4\right)\left(a+5\right)
Evaluate
4\left(a-4\right)\left(a+5\right)
Share
Copied to clipboard
4\left(a^{2}+a-20\right)
Factor out 4.
p+q=1 pq=1\left(-20\right)=-20
Consider a^{2}+a-20. Factor the expression by grouping. First, the expression needs to be rewritten as a^{2}+pa+qa-20. To find p and q, set up a system to be solved.
-1,20 -2,10 -4,5
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -20.
-1+20=19 -2+10=8 -4+5=1
Calculate the sum for each pair.
p=-4 q=5
The solution is the pair that gives sum 1.
\left(a^{2}-4a\right)+\left(5a-20\right)
Rewrite a^{2}+a-20 as \left(a^{2}-4a\right)+\left(5a-20\right).
a\left(a-4\right)+5\left(a-4\right)
Factor out a in the first and 5 in the second group.
\left(a-4\right)\left(a+5\right)
Factor out common term a-4 by using distributive property.
4\left(a-4\right)\left(a+5\right)
Rewrite the complete factored expression.
4a^{2}+4a-80=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-4±\sqrt{4^{2}-4\times 4\left(-80\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-4±\sqrt{16-4\times 4\left(-80\right)}}{2\times 4}
Square 4.
a=\frac{-4±\sqrt{16-16\left(-80\right)}}{2\times 4}
Multiply -4 times 4.
a=\frac{-4±\sqrt{16+1280}}{2\times 4}
Multiply -16 times -80.
a=\frac{-4±\sqrt{1296}}{2\times 4}
Add 16 to 1280.
a=\frac{-4±36}{2\times 4}
Take the square root of 1296.
a=\frac{-4±36}{8}
Multiply 2 times 4.
a=\frac{32}{8}
Now solve the equation a=\frac{-4±36}{8} when ± is plus. Add -4 to 36.
a=4
Divide 32 by 8.
a=-\frac{40}{8}
Now solve the equation a=\frac{-4±36}{8} when ± is minus. Subtract 36 from -4.
a=-5
Divide -40 by 8.
4a^{2}+4a-80=4\left(a-4\right)\left(a-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and -5 for x_{2}.
4a^{2}+4a-80=4\left(a-4\right)\left(a+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}