Solve for m
m=\sqrt{62}+8\approx 15.874007874
m=8-\sqrt{62}\approx 0.125992126
Share
Copied to clipboard
4\left(m^{2}-4m+4\right)-3\left(m^{2}+4\right)=2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-2\right)^{2}.
4m^{2}-16m+16-3\left(m^{2}+4\right)=2
Use the distributive property to multiply 4 by m^{2}-4m+4.
4m^{2}-16m+16-3m^{2}-12=2
Use the distributive property to multiply -3 by m^{2}+4.
m^{2}-16m+16-12=2
Combine 4m^{2} and -3m^{2} to get m^{2}.
m^{2}-16m+4=2
Subtract 12 from 16 to get 4.
m^{2}-16m+4-2=0
Subtract 2 from both sides.
m^{2}-16m+2=0
Subtract 2 from 4 to get 2.
m=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -16 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-16\right)±\sqrt{256-4\times 2}}{2}
Square -16.
m=\frac{-\left(-16\right)±\sqrt{256-8}}{2}
Multiply -4 times 2.
m=\frac{-\left(-16\right)±\sqrt{248}}{2}
Add 256 to -8.
m=\frac{-\left(-16\right)±2\sqrt{62}}{2}
Take the square root of 248.
m=\frac{16±2\sqrt{62}}{2}
The opposite of -16 is 16.
m=\frac{2\sqrt{62}+16}{2}
Now solve the equation m=\frac{16±2\sqrt{62}}{2} when ± is plus. Add 16 to 2\sqrt{62}.
m=\sqrt{62}+8
Divide 16+2\sqrt{62} by 2.
m=\frac{16-2\sqrt{62}}{2}
Now solve the equation m=\frac{16±2\sqrt{62}}{2} when ± is minus. Subtract 2\sqrt{62} from 16.
m=8-\sqrt{62}
Divide 16-2\sqrt{62} by 2.
m=\sqrt{62}+8 m=8-\sqrt{62}
The equation is now solved.
4\left(m^{2}-4m+4\right)-3\left(m^{2}+4\right)=2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-2\right)^{2}.
4m^{2}-16m+16-3\left(m^{2}+4\right)=2
Use the distributive property to multiply 4 by m^{2}-4m+4.
4m^{2}-16m+16-3m^{2}-12=2
Use the distributive property to multiply -3 by m^{2}+4.
m^{2}-16m+16-12=2
Combine 4m^{2} and -3m^{2} to get m^{2}.
m^{2}-16m+4=2
Subtract 12 from 16 to get 4.
m^{2}-16m=2-4
Subtract 4 from both sides.
m^{2}-16m=-2
Subtract 4 from 2 to get -2.
m^{2}-16m+\left(-8\right)^{2}=-2+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-16m+64=-2+64
Square -8.
m^{2}-16m+64=62
Add -2 to 64.
\left(m-8\right)^{2}=62
Factor m^{2}-16m+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-8\right)^{2}}=\sqrt{62}
Take the square root of both sides of the equation.
m-8=\sqrt{62} m-8=-\sqrt{62}
Simplify.
m=\sqrt{62}+8 m=8-\sqrt{62}
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}