Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(4x^{2}-52x+169\right)-9\left(2x-13\right)+2=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-13\right)^{2}.
16x^{2}-208x+676-9\left(2x-13\right)+2=0
Use the distributive property to multiply 4 by 4x^{2}-52x+169.
16x^{2}-208x+676-18x+117+2=0
Use the distributive property to multiply -9 by 2x-13.
16x^{2}-226x+676+117+2=0
Combine -208x and -18x to get -226x.
16x^{2}-226x+793+2=0
Add 676 and 117 to get 793.
16x^{2}-226x+795=0
Add 793 and 2 to get 795.
x=\frac{-\left(-226\right)±\sqrt{\left(-226\right)^{2}-4\times 16\times 795}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -226 for b, and 795 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-226\right)±\sqrt{51076-4\times 16\times 795}}{2\times 16}
Square -226.
x=\frac{-\left(-226\right)±\sqrt{51076-64\times 795}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-226\right)±\sqrt{51076-50880}}{2\times 16}
Multiply -64 times 795.
x=\frac{-\left(-226\right)±\sqrt{196}}{2\times 16}
Add 51076 to -50880.
x=\frac{-\left(-226\right)±14}{2\times 16}
Take the square root of 196.
x=\frac{226±14}{2\times 16}
The opposite of -226 is 226.
x=\frac{226±14}{32}
Multiply 2 times 16.
x=\frac{240}{32}
Now solve the equation x=\frac{226±14}{32} when ± is plus. Add 226 to 14.
x=\frac{15}{2}
Reduce the fraction \frac{240}{32} to lowest terms by extracting and canceling out 16.
x=\frac{212}{32}
Now solve the equation x=\frac{226±14}{32} when ± is minus. Subtract 14 from 226.
x=\frac{53}{8}
Reduce the fraction \frac{212}{32} to lowest terms by extracting and canceling out 4.
x=\frac{15}{2} x=\frac{53}{8}
The equation is now solved.
4\left(4x^{2}-52x+169\right)-9\left(2x-13\right)+2=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-13\right)^{2}.
16x^{2}-208x+676-9\left(2x-13\right)+2=0
Use the distributive property to multiply 4 by 4x^{2}-52x+169.
16x^{2}-208x+676-18x+117+2=0
Use the distributive property to multiply -9 by 2x-13.
16x^{2}-226x+676+117+2=0
Combine -208x and -18x to get -226x.
16x^{2}-226x+793+2=0
Add 676 and 117 to get 793.
16x^{2}-226x+795=0
Add 793 and 2 to get 795.
16x^{2}-226x=-795
Subtract 795 from both sides. Anything subtracted from zero gives its negation.
\frac{16x^{2}-226x}{16}=-\frac{795}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{226}{16}\right)x=-\frac{795}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{113}{8}x=-\frac{795}{16}
Reduce the fraction \frac{-226}{16} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{113}{8}x+\left(-\frac{113}{16}\right)^{2}=-\frac{795}{16}+\left(-\frac{113}{16}\right)^{2}
Divide -\frac{113}{8}, the coefficient of the x term, by 2 to get -\frac{113}{16}. Then add the square of -\frac{113}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{113}{8}x+\frac{12769}{256}=-\frac{795}{16}+\frac{12769}{256}
Square -\frac{113}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{113}{8}x+\frac{12769}{256}=\frac{49}{256}
Add -\frac{795}{16} to \frac{12769}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{113}{16}\right)^{2}=\frac{49}{256}
Factor x^{2}-\frac{113}{8}x+\frac{12769}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{113}{16}\right)^{2}}=\sqrt{\frac{49}{256}}
Take the square root of both sides of the equation.
x-\frac{113}{16}=\frac{7}{16} x-\frac{113}{16}=-\frac{7}{16}
Simplify.
x=\frac{15}{2} x=\frac{53}{8}
Add \frac{113}{16} to both sides of the equation.