4 { \left( { a }_{ 2 } \right) }^{ 2 } = \left( 5- { a }_{ 2 } \right) \left( 21- { a }_{ 2 } \right)
Solve for a_2
a_{2} = -\frac{35}{3} = -11\frac{2}{3} \approx -11.666666667
a_{2}=3
Share
Copied to clipboard
4a_{2}^{2}=105-26a_{2}+a_{2}^{2}
Use the distributive property to multiply 5-a_{2} by 21-a_{2} and combine like terms.
4a_{2}^{2}-105=-26a_{2}+a_{2}^{2}
Subtract 105 from both sides.
4a_{2}^{2}-105+26a_{2}=a_{2}^{2}
Add 26a_{2} to both sides.
4a_{2}^{2}-105+26a_{2}-a_{2}^{2}=0
Subtract a_{2}^{2} from both sides.
3a_{2}^{2}-105+26a_{2}=0
Combine 4a_{2}^{2} and -a_{2}^{2} to get 3a_{2}^{2}.
3a_{2}^{2}+26a_{2}-105=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=26 ab=3\left(-105\right)=-315
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3a_{2}^{2}+aa_{2}+ba_{2}-105. To find a and b, set up a system to be solved.
-1,315 -3,105 -5,63 -7,45 -9,35 -15,21
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -315.
-1+315=314 -3+105=102 -5+63=58 -7+45=38 -9+35=26 -15+21=6
Calculate the sum for each pair.
a=-9 b=35
The solution is the pair that gives sum 26.
\left(3a_{2}^{2}-9a_{2}\right)+\left(35a_{2}-105\right)
Rewrite 3a_{2}^{2}+26a_{2}-105 as \left(3a_{2}^{2}-9a_{2}\right)+\left(35a_{2}-105\right).
3a_{2}\left(a_{2}-3\right)+35\left(a_{2}-3\right)
Factor out 3a_{2} in the first and 35 in the second group.
\left(a_{2}-3\right)\left(3a_{2}+35\right)
Factor out common term a_{2}-3 by using distributive property.
a_{2}=3 a_{2}=-\frac{35}{3}
To find equation solutions, solve a_{2}-3=0 and 3a_{2}+35=0.
4a_{2}^{2}=105-26a_{2}+a_{2}^{2}
Use the distributive property to multiply 5-a_{2} by 21-a_{2} and combine like terms.
4a_{2}^{2}-105=-26a_{2}+a_{2}^{2}
Subtract 105 from both sides.
4a_{2}^{2}-105+26a_{2}=a_{2}^{2}
Add 26a_{2} to both sides.
4a_{2}^{2}-105+26a_{2}-a_{2}^{2}=0
Subtract a_{2}^{2} from both sides.
3a_{2}^{2}-105+26a_{2}=0
Combine 4a_{2}^{2} and -a_{2}^{2} to get 3a_{2}^{2}.
3a_{2}^{2}+26a_{2}-105=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a_{2}=\frac{-26±\sqrt{26^{2}-4\times 3\left(-105\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 26 for b, and -105 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a_{2}=\frac{-26±\sqrt{676-4\times 3\left(-105\right)}}{2\times 3}
Square 26.
a_{2}=\frac{-26±\sqrt{676-12\left(-105\right)}}{2\times 3}
Multiply -4 times 3.
a_{2}=\frac{-26±\sqrt{676+1260}}{2\times 3}
Multiply -12 times -105.
a_{2}=\frac{-26±\sqrt{1936}}{2\times 3}
Add 676 to 1260.
a_{2}=\frac{-26±44}{2\times 3}
Take the square root of 1936.
a_{2}=\frac{-26±44}{6}
Multiply 2 times 3.
a_{2}=\frac{18}{6}
Now solve the equation a_{2}=\frac{-26±44}{6} when ± is plus. Add -26 to 44.
a_{2}=3
Divide 18 by 6.
a_{2}=-\frac{70}{6}
Now solve the equation a_{2}=\frac{-26±44}{6} when ± is minus. Subtract 44 from -26.
a_{2}=-\frac{35}{3}
Reduce the fraction \frac{-70}{6} to lowest terms by extracting and canceling out 2.
a_{2}=3 a_{2}=-\frac{35}{3}
The equation is now solved.
4a_{2}^{2}=105-26a_{2}+a_{2}^{2}
Use the distributive property to multiply 5-a_{2} by 21-a_{2} and combine like terms.
4a_{2}^{2}+26a_{2}=105+a_{2}^{2}
Add 26a_{2} to both sides.
4a_{2}^{2}+26a_{2}-a_{2}^{2}=105
Subtract a_{2}^{2} from both sides.
3a_{2}^{2}+26a_{2}=105
Combine 4a_{2}^{2} and -a_{2}^{2} to get 3a_{2}^{2}.
\frac{3a_{2}^{2}+26a_{2}}{3}=\frac{105}{3}
Divide both sides by 3.
a_{2}^{2}+\frac{26}{3}a_{2}=\frac{105}{3}
Dividing by 3 undoes the multiplication by 3.
a_{2}^{2}+\frac{26}{3}a_{2}=35
Divide 105 by 3.
a_{2}^{2}+\frac{26}{3}a_{2}+\left(\frac{13}{3}\right)^{2}=35+\left(\frac{13}{3}\right)^{2}
Divide \frac{26}{3}, the coefficient of the x term, by 2 to get \frac{13}{3}. Then add the square of \frac{13}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a_{2}^{2}+\frac{26}{3}a_{2}+\frac{169}{9}=35+\frac{169}{9}
Square \frac{13}{3} by squaring both the numerator and the denominator of the fraction.
a_{2}^{2}+\frac{26}{3}a_{2}+\frac{169}{9}=\frac{484}{9}
Add 35 to \frac{169}{9}.
\left(a_{2}+\frac{13}{3}\right)^{2}=\frac{484}{9}
Factor a_{2}^{2}+\frac{26}{3}a_{2}+\frac{169}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a_{2}+\frac{13}{3}\right)^{2}}=\sqrt{\frac{484}{9}}
Take the square root of both sides of the equation.
a_{2}+\frac{13}{3}=\frac{22}{3} a_{2}+\frac{13}{3}=-\frac{22}{3}
Simplify.
a_{2}=3 a_{2}=-\frac{35}{3}
Subtract \frac{13}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}