Evaluate
-\frac{31}{12}\approx -2.583333333
Factor
-\frac{31}{12} = -2\frac{7}{12} = -2.5833333333333335
Share
Copied to clipboard
4\times \frac{1}{8}+\left(\frac{1}{2}\right)^{2}-2\times \frac{1}{2}\times \frac{2}{3}+3\times \left(\frac{2}{3}\right)^{2}-4
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
\frac{4}{8}+\left(\frac{1}{2}\right)^{2}-2\times \frac{1}{2}\times \frac{2}{3}+3\times \left(\frac{2}{3}\right)^{2}-4
Multiply 4 and \frac{1}{8} to get \frac{4}{8}.
\frac{1}{2}+\left(\frac{1}{2}\right)^{2}-2\times \frac{1}{2}\times \frac{2}{3}+3\times \left(\frac{2}{3}\right)^{2}-4
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
\frac{1}{2}+\frac{1}{4}-2\times \frac{1}{2}\times \frac{2}{3}+3\times \left(\frac{2}{3}\right)^{2}-4
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{2}{4}+\frac{1}{4}-2\times \frac{1}{2}\times \frac{2}{3}+3\times \left(\frac{2}{3}\right)^{2}-4
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{2+1}{4}-2\times \frac{1}{2}\times \frac{2}{3}+3\times \left(\frac{2}{3}\right)^{2}-4
Since \frac{2}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{3}{4}-2\times \frac{1}{2}\times \frac{2}{3}+3\times \left(\frac{2}{3}\right)^{2}-4
Add 2 and 1 to get 3.
\frac{3}{4}-\frac{2}{3}+3\times \left(\frac{2}{3}\right)^{2}-4
Cancel out 2 and 2.
\frac{9}{12}-\frac{8}{12}+3\times \left(\frac{2}{3}\right)^{2}-4
Least common multiple of 4 and 3 is 12. Convert \frac{3}{4} and \frac{2}{3} to fractions with denominator 12.
\frac{9-8}{12}+3\times \left(\frac{2}{3}\right)^{2}-4
Since \frac{9}{12} and \frac{8}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{12}+3\times \left(\frac{2}{3}\right)^{2}-4
Subtract 8 from 9 to get 1.
\frac{1}{12}+3\times \frac{4}{9}-4
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{1}{12}+\frac{3\times 4}{9}-4
Express 3\times \frac{4}{9} as a single fraction.
\frac{1}{12}+\frac{12}{9}-4
Multiply 3 and 4 to get 12.
\frac{1}{12}+\frac{4}{3}-4
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
\frac{1}{12}+\frac{16}{12}-4
Least common multiple of 12 and 3 is 12. Convert \frac{1}{12} and \frac{4}{3} to fractions with denominator 12.
\frac{1+16}{12}-4
Since \frac{1}{12} and \frac{16}{12} have the same denominator, add them by adding their numerators.
\frac{17}{12}-4
Add 1 and 16 to get 17.
\frac{17}{12}-\frac{48}{12}
Convert 4 to fraction \frac{48}{12}.
\frac{17-48}{12}
Since \frac{17}{12} and \frac{48}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{31}{12}
Subtract 48 from 17 to get -31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}