Evaluate
\frac{10312}{3465}\approx 2.976046176
Factor
\frac{2 ^ {3} \cdot 1289}{3 ^ {2} \cdot 5 \cdot 7 \cdot 11} = 2\frac{3382}{3465} = 2.976046176046176
Share
Copied to clipboard
4\left(\frac{3}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}\right)
Convert 1 to fraction \frac{3}{3}.
4\left(\frac{3-1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}\right)
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
4\left(\frac{2}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}\right)
Subtract 1 from 3 to get 2.
4\left(\frac{10}{15}+\frac{3}{15}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}\right)
Least common multiple of 3 and 5 is 15. Convert \frac{2}{3} and \frac{1}{5} to fractions with denominator 15.
4\left(\frac{10+3}{15}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}\right)
Since \frac{10}{15} and \frac{3}{15} have the same denominator, add them by adding their numerators.
4\left(\frac{13}{15}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}\right)
Add 10 and 3 to get 13.
4\left(\frac{91}{105}-\frac{15}{105}+\frac{1}{9}-\frac{1}{11}\right)
Least common multiple of 15 and 7 is 105. Convert \frac{13}{15} and \frac{1}{7} to fractions with denominator 105.
4\left(\frac{91-15}{105}+\frac{1}{9}-\frac{1}{11}\right)
Since \frac{91}{105} and \frac{15}{105} have the same denominator, subtract them by subtracting their numerators.
4\left(\frac{76}{105}+\frac{1}{9}-\frac{1}{11}\right)
Subtract 15 from 91 to get 76.
4\left(\frac{228}{315}+\frac{35}{315}-\frac{1}{11}\right)
Least common multiple of 105 and 9 is 315. Convert \frac{76}{105} and \frac{1}{9} to fractions with denominator 315.
4\left(\frac{228+35}{315}-\frac{1}{11}\right)
Since \frac{228}{315} and \frac{35}{315} have the same denominator, add them by adding their numerators.
4\left(\frac{263}{315}-\frac{1}{11}\right)
Add 228 and 35 to get 263.
4\left(\frac{2893}{3465}-\frac{315}{3465}\right)
Least common multiple of 315 and 11 is 3465. Convert \frac{263}{315} and \frac{1}{11} to fractions with denominator 3465.
4\times \frac{2893-315}{3465}
Since \frac{2893}{3465} and \frac{315}{3465} have the same denominator, subtract them by subtracting their numerators.
4\times \frac{2578}{3465}
Subtract 315 from 2893 to get 2578.
\frac{4\times 2578}{3465}
Express 4\times \frac{2578}{3465} as a single fraction.
\frac{10312}{3465}
Multiply 4 and 2578 to get 10312.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}