Verify
false
Share
Copied to clipboard
4\times \frac{39}{14}\times 2=1120
Reduce the fraction \frac{390}{140} to lowest terms by extracting and canceling out 10.
\frac{4\times 39}{14}\times 2=1120
Express 4\times \frac{39}{14} as a single fraction.
\frac{156}{14}\times 2=1120
Multiply 4 and 39 to get 156.
\frac{78}{7}\times 2=1120
Reduce the fraction \frac{156}{14} to lowest terms by extracting and canceling out 2.
\frac{78\times 2}{7}=1120
Express \frac{78}{7}\times 2 as a single fraction.
\frac{156}{7}=1120
Multiply 78 and 2 to get 156.
\frac{156}{7}=\frac{7840}{7}
Convert 1120 to fraction \frac{7840}{7}.
\text{false}
Compare \frac{156}{7} and \frac{7840}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}