Solve for x
x=-5
x=5
Graph
Share
Copied to clipboard
\left(4x+4\right)\left(x-1\right)=96
Use the distributive property to multiply 4 by x+1.
4x^{2}-4=96
Use the distributive property to multiply 4x+4 by x-1 and combine like terms.
4x^{2}=96+4
Add 4 to both sides.
4x^{2}=100
Add 96 and 4 to get 100.
x^{2}=\frac{100}{4}
Divide both sides by 4.
x^{2}=25
Divide 100 by 4 to get 25.
x=5 x=-5
Take the square root of both sides of the equation.
\left(4x+4\right)\left(x-1\right)=96
Use the distributive property to multiply 4 by x+1.
4x^{2}-4=96
Use the distributive property to multiply 4x+4 by x-1 and combine like terms.
4x^{2}-4-96=0
Subtract 96 from both sides.
4x^{2}-100=0
Subtract 96 from -4 to get -100.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-100\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-100\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-100\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{1600}}{2\times 4}
Multiply -16 times -100.
x=\frac{0±40}{2\times 4}
Take the square root of 1600.
x=\frac{0±40}{8}
Multiply 2 times 4.
x=5
Now solve the equation x=\frac{0±40}{8} when ± is plus. Divide 40 by 8.
x=-5
Now solve the equation x=\frac{0±40}{8} when ± is minus. Divide -40 by 8.
x=5 x=-5
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}