Verify
false
Share
Copied to clipboard
-26+20=\frac{6.5}{2}-3
Multiply 4 and -6.5 to get -26.
-6=\frac{6.5}{2}-3
Add -26 and 20 to get -6.
-6=\frac{65}{20}-3
Expand \frac{6.5}{2} by multiplying both numerator and the denominator by 10.
-6=\frac{13}{4}-3
Reduce the fraction \frac{65}{20} to lowest terms by extracting and canceling out 5.
-6=\frac{13}{4}-\frac{12}{4}
Convert 3 to fraction \frac{12}{4}.
-6=\frac{13-12}{4}
Since \frac{13}{4} and \frac{12}{4} have the same denominator, subtract them by subtracting their numerators.
-6=\frac{1}{4}
Subtract 12 from 13 to get 1.
-\frac{24}{4}=\frac{1}{4}
Convert -6 to fraction -\frac{24}{4}.
\text{false}
Compare -\frac{24}{4} and \frac{1}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}