Verify
false
Share
Copied to clipboard
4\left(\frac{3}{28}+\frac{21}{28}\right)=3\left(\frac{3}{4}-\frac{3}{28}\right)
Least common multiple of 28 and 4 is 28. Convert \frac{3}{28} and \frac{3}{4} to fractions with denominator 28.
4\times \frac{3+21}{28}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Since \frac{3}{28} and \frac{21}{28} have the same denominator, add them by adding their numerators.
4\times \frac{24}{28}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Add 3 and 21 to get 24.
4\times \frac{6}{7}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Reduce the fraction \frac{24}{28} to lowest terms by extracting and canceling out 4.
\frac{4\times 6}{7}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Express 4\times \frac{6}{7} as a single fraction.
\frac{24}{7}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Multiply 4 and 6 to get 24.
\frac{24}{7}=3\left(\frac{21}{28}-\frac{3}{28}\right)
Least common multiple of 4 and 28 is 28. Convert \frac{3}{4} and \frac{3}{28} to fractions with denominator 28.
\frac{24}{7}=3\times \frac{21-3}{28}
Since \frac{21}{28} and \frac{3}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{24}{7}=3\times \frac{18}{28}
Subtract 3 from 21 to get 18.
\frac{24}{7}=3\times \frac{9}{14}
Reduce the fraction \frac{18}{28} to lowest terms by extracting and canceling out 2.
\frac{24}{7}=\frac{3\times 9}{14}
Express 3\times \frac{9}{14} as a single fraction.
\frac{24}{7}=\frac{27}{14}
Multiply 3 and 9 to get 27.
\frac{48}{14}=\frac{27}{14}
Least common multiple of 7 and 14 is 14. Convert \frac{24}{7} and \frac{27}{14} to fractions with denominator 14.
\text{false}
Compare \frac{48}{14} and \frac{27}{14}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}