Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

4\left(\frac{3}{28}+\frac{21}{28}\right)=3\left(\frac{3}{4}-\frac{3}{28}\right)
Least common multiple of 28 and 4 is 28. Convert \frac{3}{28} and \frac{3}{4} to fractions with denominator 28.
4\times \frac{3+21}{28}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Since \frac{3}{28} and \frac{21}{28} have the same denominator, add them by adding their numerators.
4\times \frac{24}{28}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Add 3 and 21 to get 24.
4\times \frac{6}{7}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Reduce the fraction \frac{24}{28} to lowest terms by extracting and canceling out 4.
\frac{4\times 6}{7}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Express 4\times \frac{6}{7} as a single fraction.
\frac{24}{7}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Multiply 4 and 6 to get 24.
\frac{24}{7}=3\left(\frac{21}{28}-\frac{3}{28}\right)
Least common multiple of 4 and 28 is 28. Convert \frac{3}{4} and \frac{3}{28} to fractions with denominator 28.
\frac{24}{7}=3\times \frac{21-3}{28}
Since \frac{21}{28} and \frac{3}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{24}{7}=3\times \frac{18}{28}
Subtract 3 from 21 to get 18.
\frac{24}{7}=3\times \frac{9}{14}
Reduce the fraction \frac{18}{28} to lowest terms by extracting and canceling out 2.
\frac{24}{7}=\frac{3\times 9}{14}
Express 3\times \frac{9}{14} as a single fraction.
\frac{24}{7}=\frac{27}{14}
Multiply 3 and 9 to get 27.
\frac{48}{14}=\frac{27}{14}
Least common multiple of 7 and 14 is 14. Convert \frac{24}{7} and \frac{27}{14} to fractions with denominator 14.
\text{false}
Compare \frac{48}{14} and \frac{27}{14}.