Solve for x
x=16
Graph
Share
Copied to clipboard
4\sqrt{x}=480-29x
Subtract 29x from both sides of the equation.
\left(4\sqrt{x}\right)^{2}=\left(480-29x\right)^{2}
Square both sides of the equation.
4^{2}\left(\sqrt{x}\right)^{2}=\left(480-29x\right)^{2}
Expand \left(4\sqrt{x}\right)^{2}.
16\left(\sqrt{x}\right)^{2}=\left(480-29x\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x=\left(480-29x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
16x=230400-27840x+841x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(480-29x\right)^{2}.
16x-230400=-27840x+841x^{2}
Subtract 230400 from both sides.
16x-230400+27840x=841x^{2}
Add 27840x to both sides.
27856x-230400=841x^{2}
Combine 16x and 27840x to get 27856x.
27856x-230400-841x^{2}=0
Subtract 841x^{2} from both sides.
-841x^{2}+27856x-230400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-27856±\sqrt{27856^{2}-4\left(-841\right)\left(-230400\right)}}{2\left(-841\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -841 for a, 27856 for b, and -230400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27856±\sqrt{775956736-4\left(-841\right)\left(-230400\right)}}{2\left(-841\right)}
Square 27856.
x=\frac{-27856±\sqrt{775956736+3364\left(-230400\right)}}{2\left(-841\right)}
Multiply -4 times -841.
x=\frac{-27856±\sqrt{775956736-775065600}}{2\left(-841\right)}
Multiply 3364 times -230400.
x=\frac{-27856±\sqrt{891136}}{2\left(-841\right)}
Add 775956736 to -775065600.
x=\frac{-27856±944}{2\left(-841\right)}
Take the square root of 891136.
x=\frac{-27856±944}{-1682}
Multiply 2 times -841.
x=-\frac{26912}{-1682}
Now solve the equation x=\frac{-27856±944}{-1682} when ± is plus. Add -27856 to 944.
x=16
Divide -26912 by -1682.
x=-\frac{28800}{-1682}
Now solve the equation x=\frac{-27856±944}{-1682} when ± is minus. Subtract 944 from -27856.
x=\frac{14400}{841}
Reduce the fraction \frac{-28800}{-1682} to lowest terms by extracting and canceling out 2.
x=16 x=\frac{14400}{841}
The equation is now solved.
4\sqrt{16}+29\times 16=480
Substitute 16 for x in the equation 4\sqrt{x}+29x=480.
480=480
Simplify. The value x=16 satisfies the equation.
4\sqrt{\frac{14400}{841}}+29\times \frac{14400}{841}=480
Substitute \frac{14400}{841} for x in the equation 4\sqrt{x}+29x=480.
\frac{14880}{29}=480
Simplify. The value x=\frac{14400}{841} does not satisfy the equation.
x=16
Equation 4\sqrt{x}=480-29x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}