Solve for a
a = \frac{9}{4} = 2\frac{1}{4} = 2.25
Share
Copied to clipboard
\left(4\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Square both sides of the equation.
4^{2}\left(\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Expand \left(4\sqrt{a}\right)^{2}.
16\left(\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16a=\left(\sqrt{4a+27}\right)^{2}
Calculate \sqrt{a} to the power of 2 and get a.
16a=4a+27
Calculate \sqrt{4a+27} to the power of 2 and get 4a+27.
16a-4a=27
Subtract 4a from both sides.
12a=27
Combine 16a and -4a to get 12a.
a=\frac{27}{12}
Divide both sides by 12.
a=\frac{9}{4}
Reduce the fraction \frac{27}{12} to lowest terms by extracting and canceling out 3.
4\sqrt{\frac{9}{4}}=\sqrt{4\times \frac{9}{4}+27}
Substitute \frac{9}{4} for a in the equation 4\sqrt{a}=\sqrt{4a+27}.
6=6
Simplify. The value a=\frac{9}{4} satisfies the equation.
a=\frac{9}{4}
Equation 4\sqrt{a}=\sqrt{4a+27} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}