Evaluate
\frac{2\sqrt{10}}{3}\approx 2.108185107
Share
Copied to clipboard
4\sqrt{\frac{5}{18}}
Reduce the fraction \frac{100}{360} to lowest terms by extracting and canceling out 20.
4\times \frac{\sqrt{5}}{\sqrt{18}}
Rewrite the square root of the division \sqrt{\frac{5}{18}} as the division of square roots \frac{\sqrt{5}}{\sqrt{18}}.
4\times \frac{\sqrt{5}}{3\sqrt{2}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
4\times \frac{\sqrt{5}\sqrt{2}}{3\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}}{3\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4\times \frac{\sqrt{5}\sqrt{2}}{3\times 2}
The square of \sqrt{2} is 2.
4\times \frac{\sqrt{10}}{3\times 2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
4\times \frac{\sqrt{10}}{6}
Multiply 3 and 2 to get 6.
\frac{4\sqrt{10}}{6}
Express 4\times \frac{\sqrt{10}}{6} as a single fraction.
\frac{2}{3}\sqrt{10}
Divide 4\sqrt{10} by 6 to get \frac{2}{3}\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}