Solve for x
x=7
Graph
Share
Copied to clipboard
4\sqrt{x-3}=3+\sqrt{6x-17}
Subtract -\sqrt{6x-17} from both sides of the equation.
\left(4\sqrt{x-3}\right)^{2}=\left(3+\sqrt{6x-17}\right)^{2}
Square both sides of the equation.
4^{2}\left(\sqrt{x-3}\right)^{2}=\left(3+\sqrt{6x-17}\right)^{2}
Expand \left(4\sqrt{x-3}\right)^{2}.
16\left(\sqrt{x-3}\right)^{2}=\left(3+\sqrt{6x-17}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16\left(x-3\right)=\left(3+\sqrt{6x-17}\right)^{2}
Calculate \sqrt{x-3} to the power of 2 and get x-3.
16x-48=\left(3+\sqrt{6x-17}\right)^{2}
Use the distributive property to multiply 16 by x-3.
16x-48=9+6\sqrt{6x-17}+\left(\sqrt{6x-17}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{6x-17}\right)^{2}.
16x-48=9+6\sqrt{6x-17}+6x-17
Calculate \sqrt{6x-17} to the power of 2 and get 6x-17.
16x-48=-8+6\sqrt{6x-17}+6x
Subtract 17 from 9 to get -8.
16x-48-\left(-8+6x\right)=6\sqrt{6x-17}
Subtract -8+6x from both sides of the equation.
16x-48+8-6x=6\sqrt{6x-17}
To find the opposite of -8+6x, find the opposite of each term.
16x-40-6x=6\sqrt{6x-17}
Add -48 and 8 to get -40.
10x-40=6\sqrt{6x-17}
Combine 16x and -6x to get 10x.
\left(10x-40\right)^{2}=\left(6\sqrt{6x-17}\right)^{2}
Square both sides of the equation.
100x^{2}-800x+1600=\left(6\sqrt{6x-17}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10x-40\right)^{2}.
100x^{2}-800x+1600=6^{2}\left(\sqrt{6x-17}\right)^{2}
Expand \left(6\sqrt{6x-17}\right)^{2}.
100x^{2}-800x+1600=36\left(\sqrt{6x-17}\right)^{2}
Calculate 6 to the power of 2 and get 36.
100x^{2}-800x+1600=36\left(6x-17\right)
Calculate \sqrt{6x-17} to the power of 2 and get 6x-17.
100x^{2}-800x+1600=216x-612
Use the distributive property to multiply 36 by 6x-17.
100x^{2}-800x+1600-216x=-612
Subtract 216x from both sides.
100x^{2}-1016x+1600=-612
Combine -800x and -216x to get -1016x.
100x^{2}-1016x+1600+612=0
Add 612 to both sides.
100x^{2}-1016x+2212=0
Add 1600 and 612 to get 2212.
x=\frac{-\left(-1016\right)±\sqrt{\left(-1016\right)^{2}-4\times 100\times 2212}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, -1016 for b, and 2212 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1016\right)±\sqrt{1032256-4\times 100\times 2212}}{2\times 100}
Square -1016.
x=\frac{-\left(-1016\right)±\sqrt{1032256-400\times 2212}}{2\times 100}
Multiply -4 times 100.
x=\frac{-\left(-1016\right)±\sqrt{1032256-884800}}{2\times 100}
Multiply -400 times 2212.
x=\frac{-\left(-1016\right)±\sqrt{147456}}{2\times 100}
Add 1032256 to -884800.
x=\frac{-\left(-1016\right)±384}{2\times 100}
Take the square root of 147456.
x=\frac{1016±384}{2\times 100}
The opposite of -1016 is 1016.
x=\frac{1016±384}{200}
Multiply 2 times 100.
x=\frac{1400}{200}
Now solve the equation x=\frac{1016±384}{200} when ± is plus. Add 1016 to 384.
x=7
Divide 1400 by 200.
x=\frac{632}{200}
Now solve the equation x=\frac{1016±384}{200} when ± is minus. Subtract 384 from 1016.
x=\frac{79}{25}
Reduce the fraction \frac{632}{200} to lowest terms by extracting and canceling out 8.
x=7 x=\frac{79}{25}
The equation is now solved.
4\sqrt{7-3}-\sqrt{6\times 7-17}=3
Substitute 7 for x in the equation 4\sqrt{x-3}-\sqrt{6x-17}=3.
3=3
Simplify. The value x=7 satisfies the equation.
4\sqrt{\frac{79}{25}-3}-\sqrt{6\times \frac{79}{25}-17}=3
Substitute \frac{79}{25} for x in the equation 4\sqrt{x-3}-\sqrt{6x-17}=3.
\frac{1}{5}=3
Simplify. The value x=\frac{79}{25} does not satisfy the equation.
4\sqrt{7-3}-\sqrt{6\times 7-17}=3
Substitute 7 for x in the equation 4\sqrt{x-3}-\sqrt{6x-17}=3.
3=3
Simplify. The value x=7 satisfies the equation.
x=7
Equation 4\sqrt{x-3}=\sqrt{6x-17}+3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}