Solve for x
x=11
x=3
Graph
Share
Copied to clipboard
\left(4\sqrt{x-2}\right)^{2}=\left(x+1\right)^{2}
Square both sides of the equation.
4^{2}\left(\sqrt{x-2}\right)^{2}=\left(x+1\right)^{2}
Expand \left(4\sqrt{x-2}\right)^{2}.
16\left(\sqrt{x-2}\right)^{2}=\left(x+1\right)^{2}
Calculate 4 to the power of 2 and get 16.
16\left(x-2\right)=\left(x+1\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
16x-32=\left(x+1\right)^{2}
Use the distributive property to multiply 16 by x-2.
16x-32=x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
16x-32-x^{2}=2x+1
Subtract x^{2} from both sides.
16x-32-x^{2}-2x=1
Subtract 2x from both sides.
14x-32-x^{2}=1
Combine 16x and -2x to get 14x.
14x-32-x^{2}-1=0
Subtract 1 from both sides.
14x-33-x^{2}=0
Subtract 1 from -32 to get -33.
-x^{2}+14x-33=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=14 ab=-\left(-33\right)=33
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-33. To find a and b, set up a system to be solved.
1,33 3,11
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 33.
1+33=34 3+11=14
Calculate the sum for each pair.
a=11 b=3
The solution is the pair that gives sum 14.
\left(-x^{2}+11x\right)+\left(3x-33\right)
Rewrite -x^{2}+14x-33 as \left(-x^{2}+11x\right)+\left(3x-33\right).
-x\left(x-11\right)+3\left(x-11\right)
Factor out -x in the first and 3 in the second group.
\left(x-11\right)\left(-x+3\right)
Factor out common term x-11 by using distributive property.
x=11 x=3
To find equation solutions, solve x-11=0 and -x+3=0.
4\sqrt{11-2}=11+1
Substitute 11 for x in the equation 4\sqrt{x-2}=x+1.
12=12
Simplify. The value x=11 satisfies the equation.
4\sqrt{3-2}=3+1
Substitute 3 for x in the equation 4\sqrt{x-2}=x+1.
4=4
Simplify. The value x=3 satisfies the equation.
x=11 x=3
List all solutions of 4\sqrt{x-2}=x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}