Solve for x
x=1
Graph
Share
Copied to clipboard
\left(4\sqrt{x}-2\right)^{2}=\left(\sqrt{5-x}\right)^{2}
Square both sides of the equation.
16\left(\sqrt{x}\right)^{2}-16\sqrt{x}+4=\left(\sqrt{5-x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4\sqrt{x}-2\right)^{2}.
16x-16\sqrt{x}+4=\left(\sqrt{5-x}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
16x-16\sqrt{x}+4=5-x
Calculate \sqrt{5-x} to the power of 2 and get 5-x.
-16\sqrt{x}=5-x-\left(16x+4\right)
Subtract 16x+4 from both sides of the equation.
-16\sqrt{x}=5-x-16x-4
To find the opposite of 16x+4, find the opposite of each term.
-16\sqrt{x}=5-17x-4
Combine -x and -16x to get -17x.
-16\sqrt{x}=1-17x
Subtract 4 from 5 to get 1.
\left(-16\sqrt{x}\right)^{2}=\left(1-17x\right)^{2}
Square both sides of the equation.
\left(-16\right)^{2}\left(\sqrt{x}\right)^{2}=\left(1-17x\right)^{2}
Expand \left(-16\sqrt{x}\right)^{2}.
256\left(\sqrt{x}\right)^{2}=\left(1-17x\right)^{2}
Calculate -16 to the power of 2 and get 256.
256x=\left(1-17x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
256x=1-34x+289x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-17x\right)^{2}.
256x-1=-34x+289x^{2}
Subtract 1 from both sides.
256x-1+34x=289x^{2}
Add 34x to both sides.
290x-1=289x^{2}
Combine 256x and 34x to get 290x.
290x-1-289x^{2}=0
Subtract 289x^{2} from both sides.
-289x^{2}+290x-1=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=290 ab=-289\left(-1\right)=289
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -289x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
1,289 17,17
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 289.
1+289=290 17+17=34
Calculate the sum for each pair.
a=289 b=1
The solution is the pair that gives sum 290.
\left(-289x^{2}+289x\right)+\left(x-1\right)
Rewrite -289x^{2}+290x-1 as \left(-289x^{2}+289x\right)+\left(x-1\right).
289x\left(-x+1\right)-\left(-x+1\right)
Factor out 289x in the first and -1 in the second group.
\left(-x+1\right)\left(289x-1\right)
Factor out common term -x+1 by using distributive property.
x=1 x=\frac{1}{289}
To find equation solutions, solve -x+1=0 and 289x-1=0.
4\sqrt{1}-2=\sqrt{5-1}
Substitute 1 for x in the equation 4\sqrt{x}-2=\sqrt{5-x}.
2=2
Simplify. The value x=1 satisfies the equation.
4\sqrt{\frac{1}{289}}-2=\sqrt{5-\frac{1}{289}}
Substitute \frac{1}{289} for x in the equation 4\sqrt{x}-2=\sqrt{5-x}.
-\frac{30}{17}=\frac{38}{17}
Simplify. The value x=\frac{1}{289} does not satisfy the equation because the left and the right hand side have opposite signs.
4\sqrt{1}-2=\sqrt{5-1}
Substitute 1 for x in the equation 4\sqrt{x}-2=\sqrt{5-x}.
2=2
Simplify. The value x=1 satisfies the equation.
x=1
Equation 4\sqrt{x}-2=\sqrt{5-x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}