Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\left(4\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Square both sides of the equation.
4^{2}\left(\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Expand \left(4\sqrt{a}\right)^{2}.
16\left(\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16a=\left(\sqrt{4a+27}\right)^{2}
Calculate \sqrt{a} to the power of 2 and get a.
16a=4a+27
Calculate \sqrt{4a+27} to the power of 2 and get 4a+27.
16a-4a=27
Subtract 4a from both sides.
12a=27
Combine 16a and -4a to get 12a.
a=\frac{27}{12}
Divide both sides by 12.
a=\frac{9}{4}
Reduce the fraction \frac{27}{12} to lowest terms by extracting and canceling out 3.
4\sqrt{\frac{9}{4}}=\sqrt{4\times \frac{9}{4}+27}
Substitute \frac{9}{4} for a in the equation 4\sqrt{a}=\sqrt{4a+27}.
6=6
Simplify. The value a=\frac{9}{4} satisfies the equation.
a=\frac{9}{4}
Equation 4\sqrt{a}=\sqrt{4a+27} has a unique solution.