Evaluate
\frac{16}{5}=3.2
Factor
\frac{2 ^ {4}}{5} = 3\frac{1}{5} = 3.2
Quiz
Arithmetic
5 problems similar to:
4 \sqrt { 8 } \times \frac { 2 } { 5 } \sqrt { \frac { 1 } { 2 } }
Share
Copied to clipboard
4\times 2\sqrt{2}\times \frac{2}{5}\sqrt{\frac{1}{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
8\sqrt{2}\times \frac{2}{5}\sqrt{\frac{1}{2}}
Multiply 4 and 2 to get 8.
\frac{8\times 2}{5}\sqrt{2}\sqrt{\frac{1}{2}}
Express 8\times \frac{2}{5} as a single fraction.
\frac{16}{5}\sqrt{2}\sqrt{\frac{1}{2}}
Multiply 8 and 2 to get 16.
\frac{16}{5}\sqrt{2}\times \frac{\sqrt{1}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\frac{16}{5}\sqrt{2}\times \frac{1}{\sqrt{2}}
Calculate the square root of 1 and get 1.
\frac{16}{5}\sqrt{2}\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{16}{5}\sqrt{2}\times \frac{\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{16\sqrt{2}}{5\times 2}\sqrt{2}
Multiply \frac{16}{5} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{8\sqrt{2}}{5}\sqrt{2}
Cancel out 2 in both numerator and denominator.
\frac{8\sqrt{2}\sqrt{2}}{5}
Express \frac{8\sqrt{2}}{5}\sqrt{2} as a single fraction.
\frac{8\times 2}{5}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{16}{5}
Multiply 8 and 2 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}